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Article Info Abstract
Article History Face anonymization in intelligent experimental education is crucial for privacy
Received: protection. This paper presents a novel, real-time face blurring system for smart
27 January 2025 experimental settings. Our key contributions include: 1) customized YOLOvS
?gcjzzle(zli)z 5 (Multi-Scale Feature Fusion YOLOVS) algorithm achieving 96% accuracy at
22.67 fps for 1080p video. 2) An annotation dilation preprocessing method,
Contour-Adaptive Occlusion Refinement (CAOR), to address instrument
occlusion issues for training. 3) A specialized dataset of 51 experimental videos
Keywords with dense annotations. Our system tackles the unique challenge of preserving
AIED

o ) experimental details while anonymizing faces. We introduce two metrics,
Anonymization protection

YOLOVS Sensitivity of Blur Accuracy (SOBA) and Over Blurred Rate (OBR), to evaluate

Face segmentation performance. Our work demonstrates robustness across physics, biology, and

Occlusion chemistry experiments, maintaining a low mis-blur rate of 0.02 for instruments.

Introduction

Intelligent education systems have revolutionized learning environments, particularly in scientific experiments.
AIED (Artificial Intelligence in Education) applications and platforms (Agca, et al., 2025; Thinger, et al, 2024;
Aldahdouh, et al,2024; Ozdere, et al, 2025;) such as Knewton (Ali, et al., 2022), Dreambox Learning (Gellen, et
al., 2024), and other adaptive learning systems have gained prominence (Jing, et al., 2023; Badali, et al., 2022).
These systems collect and store student learning data, leveraging big data and machine learning methods to
analyze and provide feedback on learning outcomes (Bittencour, et al., 2024), thereby creating personalized
learning plans (Yang, et al., 2024). In scientific experiment education, computers can create virtual experimental
environments using VR or AR technologies (Kubincova, et al., 2023; Yiicel, et al., 2024; Putra, et al., 2024;
Zaturrahmi, et al., 2020), offering students more realistic laboratory scenarios. Additionally, intelligent
experiment platforms have been introduced into classrooms, where devices capture students' experiment processes
and results, analyzing their learning and operational skills (Wenyang, et al, 2023). Beyond classroom learning,
applications like Edmodo (Nurrohma, et al., 2021) and Google Classroom (Iftakhar, et al., 2016; Trisnawati, et
al., 2024) provide online educational platforms, enabling students to interact with teachers and peers both within

and outside their classes (Torun, et al., 2025).

Privacy concerns have emerged as a critical issue in AIED. AIED typically processes the collected data using
methods such as data anonymization and de-identification, where sensitive personal information is deleted or

obscured. The stored information is encrypted, and access to data is restricted to verified personnel, ensuring
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secure data control through facial recognition, fingerprint verification, or account authentication. Face
anonymization is one of the key issues for privacy protection. Current facial privacy protection methods, including
multi-object tracking with blur and pixilation (Zhou, et al., 2020; Shang, et al., 2021), k-same clustering
algorithms (Pan, et al., 2019; Yang, et al., 2024), and GAN-based approaches for virtual face generation (Wang,
et al., 2023; Kumar, et al., 2024) perform well in generic face anonymization contexts, but are not tailed for the

unique need of smart experimental education.

Scientific experiments present unique face anonymization challenges in intelligent education. Video recordings
capture students' faces, operational techniques, and instrument usage simultaneously, which demands a delicate
balance: students' facial identities must be anonymized for both personal privacy and fair assessment, while
instruments and manipulation actions must remain clearly visible for accurate evaluation. Furthermore, the
complexity lies in scientific apparatus pose additional challenges, as they often include fine structures (e.g., wires)
which are easily overlooked or confused with background noise, or transparent objects (e.g., beakers, test tubes)
which lacks clear boundaries and exhibit variable optical effects. Traditional anonymization methods struggle
with this balance. Blurring or pixelation techniques risk obscuring crucial experimental details. Our challenge is
to develop an algorithm that fulfills unique combination of requirements:

1. Accurately detect and anonymize faces in real-time.

2. Precisely segment and preserve instrument visibility, including slender structures in cluttered environments and

transparent objects with complex optical properties (refraction, reflection, transparency).

3. Maintain clear visibility of students' operational techniques.

We propose an innovative facial blurring algorithm that selectively preserves frontal experimental instruments
while anonymizing faces. Our method is built on YOLOVS, a versatile model for image detection and
segmentation. It incorporates a simple yet effective annotation pre-processing algorithm to improve separation
between small frontal experimental objects and facial pixels requiring blurring. To evaluate our method
objectively, we introduce two new metrics: SOBA (Sensitivity of Blur Accuracy) and OBR (Over Blurred Rate).
This approach achieves an optimal balance between accuracy and speed, ensuring precise facial anonymization
with efficient processing. As is shown in figure 1, the system performs fine anonymization on the primary
experimenter's face, accurately segmenting the facial contours and instruments for privacy protection. For non-

primary experimenters, the system applies coarse processing without detailing facial contours.

Figure 1. The Effect of the Face Anonymization System on Experimental Video Frames
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Our main contributions are as follows:

e  We proposed a comprehensive face anonymization framework for intelligent experimental education
systems built upon an ad-hoc customized YOLOvVS architecture: Multi-Scale Feature Fusion YOLOvVS8
(MSFF-YOLOVS). This framework achieves real-time facial blurring at 22.67 fps (1920 * 1080 pixels)
with 96% accuracy during experiments, demonstrating robustness across physics, biology, and chemistry
experimental environments. It provides targeted solutions when faces are obscured by fine or transparent
instruments, ensuring facial anonymization while clearly presenting operational techniques. Notably, it
maintains a low mis-blur rate of 0.02 for experimental instruments, offering a secure and reliable privacy
protection approach.

e We integrated a dilation module, Contour-Adaptive Occlusion Refinement (CAOR) for experimental
instrument masks within the data processing segment. This module performs outward dilation from the
central point of the experimental instrument mask, ensuring that pixels around the instrument's outline
are not misidentified. This guarantees the clear visibility of both the experimental instruments and the
operations conducted. This module reduces the system's OPR (over blur rate) by approximately 10%.

e To support our research, we created a specialized dataset. We collected 51 videos of experimenters from
different experiments, both frontal and side views, using intelligent education devices. These videos were
manually annotated with dense labels (7590 face detection and segmentation labels, 5240 instrument
labels) to create a dataset suitable for face detection and segmentation. Additionally, we processed
various poses of the experimenters within the frames (1530 poses) and created a face tracking dataset

categorized by the experimenters.

Literature Review

Current face anonymization techniques can be broadly classified into three categories: multi-object tracking
(MOT)-based methods, clustering-based methods, and generative adversarial network (GAN)-based methods.

MOT-based methods are commonly used for detecting and tracking faces in video sequences (Albiero, et al.,
2021; Liu, et al., 2023; Yang, et al., 2024). In the initial frame, face detection algorithms identify and localize
faces by generating bounding boxes. Tracking algorithms then follow the trajectory of these faces across
subsequent frames (Wang, et al., 2020; Conklin, et al., 2016). For anonymization, the pixels within the detected
bounding boxes are either blurred or pixelated. Clustering-based methods, such as the K-Same algorithm (Hocine,
etal., 2024; Meden, et al., 2018), aim to anonymize faces by replacing them with the average of the K most similar
faces in the dataset. This process involves preprocessing the facial images (e.g., aligning them by rotation) and
calculating the distances between them to identify similar faces. The original face is then substituted with the

average of its K nearest neighbors.

GAN-based methods utilize generative adversarial networks to regenerate anonymized faces (Rai, et al., 2024).
For example, Deep Privacy (Hukkelas, et al., 2019), employs conditional GANs (CGANs) to generate new faces
by extracting key facial features (e.g., eyes and eyebrows) through face detection and feature recognition. These
features are then used as input for generative models, such as diffusion networks or adversarial generators, to

synthesize new faces. These methods are effective in removing privacy-sensitive information while producing
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high-quality anonymized face images. However, under certain challenging conditions, such as non-traditional
poses or significant face occlusion, the quality of the generated images may not always meet expectations. It is a
novel way that suits the tasks with high quality of face fidelity but no time requirement. Because it requires
significant computational resources and is commonly used in image processing applications. For instance,
minusface takes 69ms to convert images for Xp protection, which already represents the lightweight version of

this type of method (Peng, et al., 2024; Mi, et al., 2024).

Common methods for facial processing include skin color thresholding and deep learning-based approaches. The
skin color thresholding method involves converting an RGB image to the YCrCb color space and setting a
threshold range to distinguish skin pixels from other background pixels. This method struggles to effectively
differentiate between hand and face pixels. In recent years, there have been numerous segmentation models
emerging in the field of deep learning. Models like YOLOvVS from the YOLO series (Terven, et al., 2023) have
integrated segmentation tasks alongside detection and classification tasks. Lightweight networks such as U-Net
(Siddique, et al., 2021) and Mask-RCNN (He, et al., 2017), tailored for medical image segmentation, have also
shown promising performance in various tasks. The trend of large models is gradually rising, particularly in the

segmentation field where models like SAM and Edge SAM are leading efforts to extract object contours.

These models segment all objects in images or use human-computer interaction to segment individual or multiple
objects, with humans providing points or bounding boxes as prompts. This approach can also be deployed locally.
Challenges of face anonymization in scientific experiment scenes are mainly two points. First, the intelligent
experiment platform input is video, which has high requirements for the simplicity and real-time performance of
the algorithm. There is a large amount of data in the video, and complex algorithms will have higher requirements
for the performance of the equipment and affect the processing speed. Secondly, the instruments and students’
techniques in scientific experiments are crucial for teachers’ observations and grading. These details must not be
obscured when applying face blurring, and the algorithm must accurately distinguish and preserve objects such as
instruments and hand movements that may be in front of the face, ensuring that these essential elements remain
clear and unaltered. This requires the algorithm to pay attention not only to the blur of the face range but also to
the accurate of the occlusion range, which has not been proposed in the field of segmentation. In order to meet

this requirement, we innovatively propose dilation data processing and segmentation model optimization.

Methods

Overview

Our real-time face anonymization system for intelligent experimental education integrates multiple components
to ensure privacy protection while preserving experimental details. We trained modified YOLOv8 models for face
detection and segmentation to localize and extract face pixels. This is combined with a BOTSort multi-object

tracker for face tracking across video frames, followed by Gaussian blurring for face anonymization.

In experimental videos, faces are frequently occluded by students' hands or instruments such as glass jars and

tubes. These occlusions can impede face segmentation and lead to misclassification of obstructing objects as face
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pixels. Consequently, this results in unintended blurring of instruments and hand motions, which are essential

elements for evaluation in intelligent scientific experiment systems.
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Figure 2. The Pipeline of our Face Anonymization Algorithm

To mitigate this issue, we developed a segmentation annotation pre-processing algorithm based on contour
dilation. This algorithm reduces face pixel misclassification and subsequent edge mis-blurring, ensuring that
experimental actions and instruments remain visible. We also modified the YOLOVS backbone and enhanced the
shortcut low-level feature extractor for both segmentation and object detection heads, improving the model's

ability to capture fine details.

Our pipeline, comprising training, validation, and inference stages, is illustrated in Figure 2. The training stage
involves data processing, application of our algorithm, and model training. During validation, we utilize multiple
scoring functions to evaluate model performance and adjust parameters. In the inference stage, we employ the

trained models for face anonymization while maintaining experimental observation integrity.

Algorithm Design

Our algorithm addresses the challenge of protecting student privacy in intelligent educational equipment while

maintaining the visibility of experimental operations. We developed a face detection and segmentation system

that identifies and tracks faces in scientific experiment videos, localizes operators, and applies occlusion and face
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segmentation blur to the primary operator. To optimize processing speed, the algorithm distinguishes between
primary and non-primary operators in the detection and tracking module. For non-primary operators, we directly

blur their bounding boxes, thereby reducing the computational load on the segmentation module.

The core of our segmentation and blurring system is built upon an improved YOLOVS architecture. This modified
structure retains convolutional features from lower layers (e.g., P2) to enhance small object detection and
precision. We introduced a new feature fusion method to strengthen the interaction between shallow and deep
feature layers, resulting in improved multi-scale detection performance. A significant challenge in experimental
settings is the occlusion of faces by instruments or students' hands. To address this, we implemented a dilation
data processing method. This technique extends the edges of occlusions towards the face, effectively preventing

unintended blurring of critical experimental objects.

Contour-Adaptive Occlusion Refinement (CAOR)

During face segmentation training and inference, down sampling and other operations reduce image resolution,
sacrificing detailed features and making it difficult to accurately distinguish between the contours of faces and
instruments. Additionally, the movement of operators or instruments causes motion blur, leading to unclear or

trailing edges of objects in single-frame images.

To this end, CAOR is specifically designed to improve the quality of training data for face segmentation models,
with a crucial focus on preserving apparatus and instruments as non-face areas. This method is applied exclusively
during the training phase to enhance the model's ability to accurately distinguish between faces and experimental

equipment.

Algorithm Contour-Adaptive Occlusion Refinement
Input:

face_mask: face binary mask of the main operator

occlusion_mask: binary mask of the occlusion in front of operator’s face
Output:

processed mask: face mask after the processing of occlusion mask’s edge dilation

—_

Function FindCenterOfFace(face mask):
total x, total vy, total pixels=0, 0,0
for each pixel (i, j) in binary _mask do

if face_mask][i][j] == 1 then
total x +=]j
total y+=1

total pixels +=1

0 N N B~ W

center x = total x /total pixels
center y = total y/total pixels

9 return center_x, center_y

439



Cui, Li, Chen, Liu, Zhao, Liu, & Shang

11 intersection_mask = AND (face mask, occlusion mask)
13 intersection_contours = FindContours(intersection_mask)
# Calculate Dilation scale factor
15 face center = FindCenterOfFace(face mask)
16 scale factor = CalScaleFactor (face _mask, occlusion mask)
17 scale factor = ApplyGaussianBlur(scale factor)
# Calculate Dilation vector and add new point to the original contour

20 for each contour in intersection_contours do

22 for each point (x, y) in contour do

24 vector to center = (face center.x - X, face center.y -y)

26 vector_length = sqrt (vector_to_center.x"2 + vector_to_center. y"2)

28 vector_length = max (vector length, epsilon)

29 normalized_vector = (vector to center.x / vector length, vector to center. y / vector length)
30 expanded direction = (normalized vector.x * scale factor, normalized vector. y * scale factor)
31 expansion_distance = scale_factor

32 new_x = X + expanded_direction.x * expansion_distance / vector length

33 new_y =y + expanded_direction. y * expansion_distance / vector length

35 add (new_x, new_y) to scaled contour

36 end for

37 add scaled contour to scaled contours
38 end for

39  Processes_mask = CrprimaryeateMaskFromContours(scaled contours)

When occlusion occurs, we use segment annotations as the initial contour for faces and occluding objects, with
the overlapping boundary between the occlusion and the face as the boundary to be expanded, and the direction
pointing towards the face center as the expansion direction. Since the movement of objects varies across frames,
we adaptively determine the dilation coefficient d, by assessing the recognizability of overlapping targets in the
recognition area without compromising face anonymization. This allows the overlapping edges to expand towards
the face, effectively addressing the issue of misblurring at the edges of occlusions caused by motion blur and

feature extraction.

Multi-Scale Feature Fusion YOLOvS (MSFF-YOLOvVS)

MSFF-YOLOv8 addresses the potential loss of fine-grained features during downsampling in the original
YOLOVS architecture. This enhanced model introduces a novel feature fusion method to improve the preservation
and utilization of detailed information across different scales(figure 3, the red arrows indicate the modified feature
transmission and fusion). In the Neck component, MSFF-YOLOVS8 incorporates additional feature connection
paths, specifically between shallow feature layers (such as P2) and deeper layers. This is achieved through
increased Upsample and Concat operations, fostering stronger interactions between multi-scale features. The

frequency of up-sampling and down-sampling operations in the feature pyramid is also increased, optimizing
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information flow between shallow features (P2, P3) and deep features (P4, P5). These modifications significantly

enhance the model's capability to detect small objects.

The Head component of MSFF-YOLOVS introduces a semantic segmentation branch, integrating additional
ConvModule and CSP2Conv modules after each feature layer's output. This design enables simultaneous object
detection and semantic segmentation, effectively implementing multi-task learning within the model. By fusing
multi-level features and concatenating them layer by layer, MSFF-YOLOVS preserves both fine-grained
information and multi-scale contextual data. This comprehensive approach aims to enhance the model's overall
accuracy and robustness, particularly in complex scenarios. The improvements are designed to offer a more

refined solution for detection and segmentation tasks, with a focus on multi-scale and small object detection

performance.
Input
ConvModule :‘ CSPLayer_2Conv : - »  Segmentation
ConvModule !+ Coneat o
Upsample 16 ConvModule :
CSPLayer 2Conv  ° ' v
CSPLayer_2Conv " ————— Concat »
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Figure 3. Diagram of MSFF-YOLOv8 Model Structure

Experiment and Discussion

We created a dataset for face detection, segmentation, and tracking tasks, focusing on scientific experiment videos,
which captures student faces in real time. To evaluate our approach, we conducted experiments using both the
MSFF-YOLOVS network and the original YOLOVS network, as well as SAM (Segment Anything Model) and
Edge SAM. The comparisons were based on three key metrics: frames per second (FPS) to evaluate processing

speed, SOBA to reflect segmentation accuracy, and OPR, a metric specifically designed for experimental
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scenarios, to measure the retention of occluded objects. This comprehensive evaluation allowed us to effectively
analyze the overall effectiveness of the framework tailored for experimental scenarios, as well as the impact of

CAOR method and YOLOVS network optimizations.

Dataset

We collected 51 videos of various experiments such as "balance measurement", "light refraction", "pinhole
imaging" and "density measurement of substances" using intelligent educational equipment and manually
annotated face detection boxes and related pixels as benchmarks. We ultimately selected 17 experiment videos in
which students were frequently occluded as occluded dataset. Frames were extracted every 10 seconds from these
videos, resulting in 1080*1920 RGB images, and a dataset of 1049 images which combines both seldom-occluded
and frequent occluded dataset. Each image was annotated with face bounding boxes and face pixels to create both
face detection and face segmentation datasets. When the same face was occluded by instruments and divided into
several parts, each part was labeled as a face. Additionally, we organized the different postures of each operator

to create an object tracking dataset.
Metrics

In this study, we aim to evaluate the performance of the algorithm under various conditions using three key
metrics: Frame Rate (FPS), Sensitive Object Blur Accuracy (SOBA), and Over Blur Rate (OBR) [15]. The FPS
metric is used to quantify the algorithm’s processing speed by measuring the number of frames processed per
second, serving as a primary indicator of real-time efficiency. Higher FPS values reflect the algorithm’s ability to
handle large volumes of data efficiently without compromising performance. SOBA, on the other hand, measures
the algorithm’s ability to accurately handle face blurring within video frames. This metric specifically evaluates
how well the algorithm maintains object boundaries during dynamic scenes, with higher values indicating more
accurate blurring management. OBR focuses on the mis blurring of occluded objects, assessing the algorithm's
effectiveness in segmenting occluded regions. A lower OBR value is desirable as it reflects improved performance
in distinguishing and accurately segmenting occluded faces or objects, thus minimizing the detrimental effects of
blur on recognition accuracy. Together, these metrics offer a comprehensive evaluation of the algorithm's

performance in terms of speed, accuracy in dynamic conditions, and its ability to manage occlusions.

h (mt + fpt + mmt)

2 (90)
€y

Where g, is total pixels, mm, are pixels of faces that were not detected, m, is detected pixels that were incorrectly

SOBA=1-—

identified as non-facial, f,,, is Pixels incorrectly identified as facial in frame t.

2t for

t Ct

OBR =

(2)

Where c; are all matched pixels, f,; are pixels that are mistakenly marked as human faces.
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SOBA and OBR is intuitive explained in figure 4, (a) shows the case where the algorithm performs well, serving
as the baseline. SOBA represents the accuracy of detecting facial pixels—the higher the value, the better. In (b),
the two images have a lower SOBA compared to (a), indicating fewer detected facial pixels and lower accuracy.
OBR represents the rate of erroneous blurring of instruments and operations—the lower the value, the better. A
lower OBR means fewer pixels of instruments are misidentified as facial pixels. In (c), there is a high SOBA and
a high OBR, indicating a higher accuracy in facial detection compared to (b), but also an erroneous blurring of

instruments and operations.

Figure 4. Comparison of Effects of Different SOBA and OBR

Evaluation of Algorithm Performance

Due to the lack of publicly available datasets, we used our proposed dataset. We trained and tested two models,
YOLOvVS and MSFF-YOLOVS, on datasets that were either processed with or without CAOR, to evaluate the
impact of CAOR on model performance. Additionally, we compared these models with other segmentation
models such as SAM and Edge-SAM. We randomly selected 20 segments of 5-minute video clips and compared
the models' blurring accuracy (SOBA) and frame rate (FPS) against manually annotated data. We trained the face
detection model on YOLOVS8 and set the point in bounding box as a prompt for face segmentation based on SAM

and Edge-SAM.

In particular, we tested some heavily occluded video segments to assess the models' segmentation and blurring
performance under complex occlusion scenarios, especially focusing on cases of mis blurring (OBR). Figure 5
compares results of YOLOvS model and MSFF-YOLOv8 model with varying parameters. The rightmost column
indicates the model used for each row. Column (a) shows two original experimental images. Column (b) and (c)
have an image size of 640, with column (b) without CAOR and column (c) processed with CAOR. Columns (d)
and (e) have an image size of 1920, with column (d) without CAOR and column (e) with CAOR.

SAM is one of the most popular methods for segmentation tasks and was the first method we attempted in our

preliminary experiments. However, due to the lack of semantic information, the YOLO series is more suitable for

443



Cui, Li, Chen, Liu, Zhao, Liu, & Shang

this task. In the experiments, we compared it with YOLOv8 model. We trained multiple models for testing,
comparing the performance of YOLOv8m and MSFF-YOLOVS, as well as the effect of incorporating dataset
CAOR processing. MSFF-YOLOVS is the new model network structure proposed by us. We randomly selected
20 segments of 5-minute videos from our captured footage for facial blur testing, comparing accuracy and

inference speed against manually annotated data.

Yolov8

Yolov8

Figure 5. Comparison of different YOLOv8 Model with Varying Parameters.

Table 1. Evaluation of Different Network Structures and Data Processing Methods

Parameters Appearance

Model Network Data SOBA (1) Fps (1)
Structure processing

SAM original original 0. 6852 (0.0729)) 1.05 (13.44))
Edge-SAM original original 0. 5907 (0.1674]) 5.46 (9.03))
YOLOvS original original 0. 7581 (Baseline) 14.49 (Baseline)
YOLOv8+CAOR original dilation 0. 8598 (0.1017 1) 14.49 (-)
MSFF-YOLOvS improved original 0. 8582 (0.10017) 22.67 (8.181)

MSFF-YOLOv8

improved dilation 0. 9337 (0.1756 22.67 (8.18
LCAOR p ( 1)) (8.181)

In Table 1, T indicates that a higher value for the metric is desirable and the increase in SOBA and FPS values
is considered positive. A value followed by T indicates how much the metric has im-proved compared to the

baseline. Conversely, a value followed by | indicates how much the metric has decreased compared to the
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baseline. As is shown in the table, the processing speed of SAM and edge-SAM when handling experimental
videos frame by frame is unsuitable for high-real-time video processing scenarios. Additionally, their accuracy in
experimental segmentation is slightly lower compared to YOLOv8. MSFF-YOLOv8 demonstrates higher real-
time performance compared to the original version. With default parameters, its processing speed reaches 14.49
FPS, which is an improvement of 8.18 FPS over YOLOvVS. This meets the real-time processing requirements of

face privacy protection systems in educational scenarios.

In terms of accuracy, the model trained on datasets preprocessed with CAOR achieves a higher accuracy for
blurred images compared to the model trained on unprocessed datasets. In actual experimental scenarios, 70% of
video frames may be in an unobstructed state. We manually selected some heavily occluded videos for testing to
evaluate the algorithm's segmentation and blurring performance under instrument or procedural obstruction,

particularly assessing cases of erroneous obstruction of instruments versus procedures.

The improved YOLOvV8 model demonstrated great performance in both original and heavily obstructed videos
shown in Table 2 (original full dataset) and table 3 (occluded dataset), especially after the targeted data dilation
processing, which significantly reduced the OBR indicator. The MSFF-YOLOv8 model generally outperforms
the original YOLOvVS. In the MSFF-YOLOvVS model, directly transmitting features from P2 and P3 layers to the
head for prediction actually lowered accuracy at low resolutions. Based on comprehensive experimental results,
setting image size to 1920 after modifying the model achieved the highest accuracy and minimized erroneous
obstruction rates. However, under the default input size, both YOLOv8 and the proposed model show suboptimal
performance compared to when the input size is adjusted. Therefore, in practical applications, it is crucial to

reasonably select and fine-tune the input size to achieve optimal results.

Table 2. Comparison of Different Parameters on Full Dataset

Parameters Appearance

Model Image size SOBA (1) OBR ()

SAM 640 0. 6852 (0.0729]) 0.1038 (0.0187])
Edge-SAM 640 0.5907 (0.1674]) 0.1268 (0.00431)
YOLOvS8 640 0. 7581 (Baseline) 0.1225 (Baseline)
YOLOv8 + CAOR 640 0. 8598 (0.10171) 0.0928 (0.0297))
YOLOVS 1920 0. 9484 (0.19031) 0.1037 (0.0188))
YOLOvVS + CAOR 1920 0. 9547 (0.19667) 0.0174 (0.1051})
MSFF-YOLOVS8 640 0. 8582 (0.100171) 0.1158 (0.0067))
MSFF-YOLOvS + CAOR 640 0. 9337 (0.17567) 0.0457 (0.0768))
MSFF-YOLOVS8 1920 0. 9507 (0.19267) 0.0792 (0.0433))
MSFF-YOLOvS + CAOR 1920 0. 9602 (0.20211) 0.0159 (0.1066)
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Table 3. Comparison of Different Parameters on Occluded Dataset

Parameters Appearance

Model Image size SOBA (1) OBR ()

SAM 640 0. 5907 (0.1402)) 0.1268 (0.0181})
Edge-SAM 640 0. 4267 (0.3042)) 0.1686 (0.02371)
YOLOvVS8 640 0. 7309 (Baseline) 0.1449 (Baseline)
YOLOvVS + CAOR 640 0. 8237 (0.092871) 0. 0934 (0.0515))
YOLOVS 1920 0. 9061 (0.17527) 0. 1369 (0.0080])
YOLOvVS + CAOR 1920 0.9124 (0.18157) 0. 0242 (0.1207])
MSFF-YOLOVS8 640 0. 8074 (0.07657) 0. 1288 (0.0161))
MSFF-YOLOvVS + CAOR 640 0. 8727 (0.14187) 0. 0480 (0.0969])
MSFF-YOLOv8 1920 0.9207 (0.189871) 0. 0834 (0.0615])
MSFF-YOLOvS + CAOR 1920 0. 9221 (0.19121) 0.0167 (0.1282))

Conclusion

This paper introduces a novel face anonymization system tailored for scientific experimental education scenarios
within AIED. The system leverages an enhanced YOLOv8 model (MSFF-YOLOVS), incorporating improved
low-level feature retention and fusion techniques, alongside strategic dilation processing of training data, Contour-
Adaptive Occlusion Refinement (CAOR). This approach achieved 96.02% accuracy and maintained a real-time
1080p video processing speed of 22.67 fps. Our system successfully achieves face anonymization while
preserving crucial experimental details. This balance is particularly vital in intelligent scientific experimental

education scenarios, where maintaining the visibility of apparatus is as important as protecting privacy.

While our implementation of CAOR dilation processing during the data preparation phase significantly mitigates
edge pixel misclassification issues, we acknowledge that further research is necessary to achieve precise edge
classification during real-time inference. This presents an exciting avenue for future work, potentially leading to

even more robust and accurate face anonymization in dynamic educational environments.
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