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This study examines factors influencing the preference for Python and Java as
introductory programming languages in a Nigerian higher education institution. Using
an integrated framework combining the Extended Unified Theory of Acceptance and
Use of Technology (UTAUT2) and the Technology Acceptance Model (TAM2), key
constructs such as perceived usefulness, ease of learning, social influence, and industry
relevance were identified as crucial in shaping students’ preferences. A survey of 308
second-year students revealed Python as the preferred beginner-level language, with
75.6% favoring it over Java. Python’s perceived ease of learning (M = 4.09),
usefulness (M = 4.41), and alignment with industry demands (M = 4.34) were
significantly higher than Java’s (M = 3.31, 3.74, and 3.78 respectively). Additionally,
70 students (over 22%) selected C++ as the best alternative, appreciating its ability to
provide a deeper understanding of system-level programming. Regression analysis
showed perceived usefulness (B = 0.24), ease of learning (B = 0.22), and industry
relevance (B =0.21) as strong predictors of language preference, especially for Python.
Students’ perceptions of future use and social influence also significantly predicted
preferences, highlighting Python’s applicability to emerging technologies and career
goals. The study recommends prioritizing Python for introductory courses, retaining
Java for advanced topics, and integrating Generative Al tools to enhance programming
education outcomes.
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Introduction

The choice of an introductory programming language for beginner-level instruction is a crucial decision that
significantly impacts students' learning experiences and outcomes (Ishaq & Alvi, 2023). While numerous
programming languages have dedicated resources for beginners, institutions must balance pedagogical
effectiveness with industry relevance when choosing a programming language. However, despite the growing
emphasis on programming education, there is a lack of consensus on the most suitable introductory language.
Many universities, particularly in Europe, have gravitated towards Java, Python, C++, and C, with Python
emerging as a preferred option due to its readability and growing industry demand as shown in a study by Siegfried
etal., (2021). He observed that Java, Python, C++, and C are the predominant languages employed in introductory
programming courses across European institutions of higher education. This trend is further corroborated by a
global survey conducted by Mason et al., (2024), which revealed that Python and Java are jointly the leading
programming language for teaching programming globally. Furthermore, a multi-group analysis conducted in a
study by Ling et al., (2021) comparing Python and Java in programming courses revealed that students
demonstrated significantly higher learning motivation, self-efficacy, and overall effectiveness in Python. The
study attributes this preference to Python’s simpler data and programming structure and shorter syntax, making it
more suitable for beginner-level programming. Collectively, these findings underscore the growing recognition
of Python’s suitability as an entry-level programming language, driven by both educational benefits and labor

market relevance.

Nevertheless, little research explicitly addresses how students perceive these choices and how evolving
technological trends influence programming pedagogy. The rapid advancements in educational technology,
including the rise of GenAl, have introduced new dynamics into programming education (Zastudil et al., 2023).
Al-driven coding assistants, automated debugging tools, and intelligent tutoring systems are transforming how
students learn to code. Recent studies indicate that GenAl can influence programming language preferences by
lowering the barriers to learning complex languages and providing personalized learning experiences (Phung et
al., 2023). This emerging trend highlights the need for a fresh evaluation of programming language selection
criteria, ensuring that introductory programming aligns with contemporary technological advancements, industry

demands and students' motivation to acquiring coding skills.

A critical question remains: What criteria guide academic institutions in selecting, maintaining, or transitioning
to specific programming languages for instructing first-year students? Identifying and understanding these criteria
is essential for informing future decisions and ensuring the effective dissemination of foundational programming
concepts to the next generation of programmers. Existing research suggests that factors such as ease of learning,
community support, industry relevance and pedagogical effectiveness play a role in language selection
(Chakraborty et al., 2021; Dela Rosa, 2023). Recent studies emphasize the importance of aligning programming
education with real-world applications and industry expectations (Romao et al., 2024). A comprehensive analysis
by Dobslaw et al., (2023) identified "market demand" as the most influential factors in language selection. This
underscores the need for a balanced approach that considers both students' learning experiences and long-term

professional applicability.
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Programming language selection is often predominantly guided by institutional policies or instructor preferences,
with minimal input from students (Asgari et al., 2024). However, with the increasing impact of GenAl on
programming practices and the evolving needs of the tech industry, it is increasingly crucial to incorporate
students' perspectives into curriculum decision-making processes. Recent studies emphasize that aligning
educational practices with student experiences and expectations is essential for effective integration of GenAl
tools in computing education (Keuning et al., 2024; Zastudil et al., 2023). A holistic approach that combines
insights from educators, industry professionals, and students can develop a more informed, practical, and widely
embraced choice of programming languages. Although prior research has primarily focused on the cognitive and
pedagogical aspects of programming education (Singh & Rajendran, 2024), there is limited exploration of how
students' perceptions, motivations, and acceptance of programming languages shape their learning experiences.
To address this gap, this study investigates students' perspectives on Python and Java as introductory programming
languages within a Nigerian higher education institution (HEI). By employing an integrated framework that
synthesizes the Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) and the Technology
Acceptance Model (TAM2) (Rudhumbu, 2022; Venkatesh et al., 2012), this research identifies key factors
influencing programming language preferences. The findings provide valuable empirical insights to inform a
balanced and inclusive approach to language selection, one that aligns the viewpoints of educators, industry
professionals, and students with the context of emerging technologies such as GenAl and Educational Technology

(EdTech) (Haroud & Saqri, 2025).

Alternative Programming Languages based on Learners Perspective

It is worth noting that learners in any field often lack the comprehensive understanding required to identify the
most suitable materials for effectively grasping a subject. This is particularly true in the context of programming,
where novice learners may not possess the necessary insights to determine which programming language would
be suitable for their initial exposure to coding concepts. Furthermore, many university students are primarily
driven by the goal of getting good grades or passing courses, rather than pursuing an in-depth comprehension of
the subject matter (Abbas et al., 2023). As a result, relying solely on the learner's perspective when selecting an
introductory programming language may not be the most prudent approach. Nonetheless, as illustrated by Asgari
et al. (2024) research, incorporating students' perspectives and feedback into the selection of pedagogical
approaches and programming languages for teaching coding concepts can substantially enhance learning

outcomes while developing professional growth among instructors.

In contrast, programming textbooks aimed at beginners are typically designed with the learner's perspective in
mind, aiming to foster an engaging and accessible learning experience while promoting language adoption, which
in turn boosts the book's sales. Authors of these introductory programming textbooks often base their choices on
a programming language they are intimately familiar with and comfortable using, which can potentially introduce

biases or limitations.

Therefore, no single category of criteria for choosing a programming language in instructing first-year students

and novice programmers is foolproof. While the university curriculum committee or tutors' criteria for selecting
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a programming language to teach basic programming concepts to new learners may seem more valid, it is also
imperative to consider the learners' perspective, as this approach has been predominantly adopted by authors of
introductory programming textbooks. A balanced and holistic approach that blends both the teachers' and students'
perspectives on programming language selection criteria would enable institutions to make more informed and
widely acceptable choices. By incorporating insights from both stakeholders, the chosen programming language
would better align with the pedagogical goals of instructors while catering to the learning needs and preferences

of students, ultimately enhancing learners' understanding and performance in programming.

Related Works and Theoretical Framework

Related Works

Prior research incorporating both students' perspectives and university committee or tutor viewpoints in selecting
a programming language for teaching basic concepts to first-year students has not been extensively explored.
However, several studies have attempted to address this challenge of choosing an appropriate programming
language for introducing coding to new or early beginners (Perera et al., 2021). Recent studies have expanded our
understanding of programming language selection for beginners, by emphasizing the psychological, practical and
contextual implications for learners and not only the technical and pedagogical criteria. Building upon earlier
research by Kruglyk et al., (2012), and Sobral, (2021), which primarily focused on educators' perspectives, these
works incorporate learner-centric factors such as programming anxiety, cognitive load, real-world applicability,
and infrastructural limitations. Demir, (2022) investigated the impact of integrating educational programming
languages into both theoretical and practical components of programming courses. The study found that such
integration significantly reduced programming anxiety and enhanced academic achievement among students. This
suggests that a holistic approach to teaching programming, which combines theory with hands-on practice, can
alleviate common psychological barriers faced by novices. Jain et al., (2024) conducted a comparative analysis of
Python and C to determine their suitability for beginners. The study highlighted Python's simplicity, readability,
and extensive library support as key factors that facilitate a smoother learning curve for novices. In contrast, while
C offers insights into low-level programming and memory management, its complexity may pose challenges for
beginners. Therefore, Python was recommended as a more accessible entry point for those new to programming.
Fulton et al., (2021) explored the adoption of Rust, a secure programming language, through interviews and
surveys with professional developers. While Rust offers benefits like enhanced security and performance, the
study identified challenges such as a steep learning curve and limited library support. These findings underscore
the importance of balancing language features with learner accessibility when selecting a programming language
for educational purposes. Eteng et al., (2022) added a critical dimension to this discourse by focusing on the
challenges faced by undergraduate learners in developing countries. Through a systematic review, they proposed
a model for effective programming instruction that leverages mobile and online compilers to improve
accessibility, especially in resource-constrained environments. Their work underscores the importance of
considering infrastructural realities alongside pedagogical and psychological factors, reinforcing the need for

practical, inclusive, and context-aware approaches to programming education.

Collectively, these studies advocate for a learner-centered approach in choosing introductory programming
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languages. They emphasize the need to consider psychological, technical, and contextual factors to ensure that
the selected language not only imparts programming concepts effectively but also supports learner confidence,

accessibility, and overall engagement.

Theoretical Framework

The selection of an introductory programming language significantly influences students' learning experiences
and their long-term proficiency in software development. Traditional educational theories offer valuable insights
into the cognitive and pedagogical dimensions of programming instruction. However, they often overlook crucial
factors such as student perceptions, motivations, and technology adoption behaviours. To bridge this gap, this
study adopts an integrated framework that combines the Extended Unified Theory of Acceptance and Use of
Technology (UTAUT?2) and the Technology Acceptance Model (TAM?2) to evaluate the factors shaping students'
programming language preferences. In the proposed structural model, Programming Language Preference (PLP)
serves as the central dependent construct. All constructs derived from UTAUT2 and TAM?2, such as perceived
ease of use, habitual use, social influence, facilitating conditions, and perceived usefulness, are hypothesized to
influence students’ PLP. Both TAM2 and UTAUT2 were originally developed to predict technology adoption in
organizational contexts but have been successfully applied in educational settings to understand technology
acceptance among students and educators (Rudhumbu, 2022; Venkatesh et al., 2012). To address the limitations
of each model, this study proposes a synthesized framework that leverages the cognitive focus of TAM?2 and the
contextual breadth of UTAUT2, supplemented by constructs related to intrinsic motivation, habitual behaviours,
and industry relevance. TAM2 focuses on individual cognitive factors such as Perceived Usefulness (PU) and
Ease of Learning (EL) (adapted from Perceived Ease of Use (PEU)), which are central to understanding students’
academic performance and career goals. However, it neglects social and contextual influences, such as peer input
and resource availability, that are often vital in educational settings. Conversely, UTAUT2 incorporates constructs
like Social Influence (SI), Facilitating Conditions (FC), and Habitual Use (HT), providing a broader perspective
on the social and contextual dimensions of technology adoption. Despite its broader scope, UTAUT2

underemphasizes intrinsic motivation and the relevance of specific technologies to professional applications.

To enhance the explanatory power of the integrated framework, this study incorporates two adapted constructs:
Relevance to Industry (RI) and Likelihood of Future Use (LFU). These constructs extend the traditional
dimensions of TAM2 and UTAUT?2 to better fit educational contexts. RI can be seen as an extension from TAM?2
and the Task-Technology Fit (TTF) model, emphasizing how students perceive the value of a programming
language in relation to industry trends and employability. LFU, meanwhile, aligns with and deepens the
Behavioural Intention component of both models by capturing students’ expectations about the long-term
applicability and relevance of a programming language across academic and professional contexts. For instance,
Python’s simplified syntax and intuitive learning curve may align with TAM2 constructs, while UTAUT2 explains
how social and institutional factors influence its popularity. The framework is further built by insights from
Cognitive Load Theory and Expectancy-Value Theory. Cognitive Load Theory posits that reducing cognitive
barriers, such as complex syntax, facilitates efficient learning by minimizing extraneous cognitive load (Quintero-

Manes & Vieira, 2024; Sandoval-Medina et al., 2024). Expectancy-Value Theory, on the other hand, highlights
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that students’ motivation to engage with a programming language is shaped by their expectations of success, the
perceived value of the language, and its alignment with their future goals (Schoeffel et al., 2021). By combining
the strengths of TAM2 and UTAUT2 while integrating overlooked factors related to motivation and industry
relevance, this study establishes a strong framework for understanding programming language adoption among
novice learners. This multifaceted approach not only strengthens the analytical depth of the study but also yields
practical implications for educators and curriculum designers. Specifically, aligning instructional strategies with
students’ cognitive capacities, motivational drivers, and social-contextual influences allows for more informed
and inclusive decisions regarding the selection of introductory programming languages. Ultimately, this
framework aims to enhance student engagement, support meaningful learning outcomes, and ensure curricular

relevance to evolving industry demands.

TAM2 s

) Cognitive Load
Perceived Usefulness (PU)
Ease of Learning (EL) Theory
Relevance to Industry (RI) o -
Likelihood of Future Use = Cognitive Barriers
(LFU)

Programming
-+ Language
Preferences

UTAUT2 Expectancy-Value
Social Influence (ST) Theory
Fadilitating Conditions (FC)
Habitual Use (HT) » Motivation
Likelihood of Future Use

(LFU)

Figure 1. Theoretical Framework Integrating TAM2, UTAUT?2, and Pedagogical Theories

Hypotheses Development
Perceived Usefulness (PU)

Perceived Usefulness (PU), derived from the TAM2, corresponds to the concept of performance expectancy. It
refers to the degree to which an individual believes that using a particular tool, system, or technology will enhance
their performance or help them achieve specific goals (Penney et al., 2021). In this context, students’ beliefs about
how Python or Java might contribute to achieving academic or professional goals are crucial. These beliefs often
emphasize practical benefits such as enhancing academic performance, improving understanding of programming
concepts, and supporting future projects. Accordingly, the following hypothesis is proposed:

H:: There is a significant relationship between students' perceived usefulness of Python and Java and

their preference for either language in beginner-level programming.

Ease of Learning (EL)

According to Nguyen et al. (2024), perceived ease of learning (or use) derived from the TAM2 model, denotes
the extent to which an individual believes that using a certain technology requires minimal effort. Lin (2022)
stressed this factor as a positive influence on students’ learning attitudes. This study aims to explore how students’

perceived ease of learning influences their preferences for either Python or Java. The hypothesis is stated as:
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H:: Students' perceived ease of learning Python and Java significantly influences their preference for

either language in beginner-level programming.

Habitual Use (HT)

Habitual Use (HT), as conceptualized in the UTAUT2 framework, reflects the extent to which individuals use a
technology automatically due to repeated exposure and experience over time (Venkatesh et al., 2012). Although
HT may appear less relevant at the early stages of learning, Iftikhar et al., (2022) argue that students who regularly
engaged with these tools developed better problem-solving skills and a deeper understanding of programming
concepts. This leads to the following hypothesis:
H;: Students who regularly engaged with a programming languages significantly shape their habitual use
of the languages, thereby influencing their preference for either Python or Java in beginner-level

programming.

Social Influence (SI)

In UTAUT?2, Social Influence (SI) refers to the degree to which individuals perceive advice or views from
important others, such as peers, family members, or instructors who believe they should use a particular
technology. In a study by Shahzad et al., (2023) they highlighted how such social expectations such as social
media and peers can powerfully affect a student's technology adoption. Therefore, the study proposes the
following hypothesis:

H.: Social influence significantly affects students’ choice between Python and Java for beginner-level

programming.

Facilitating Conditions (FC)

Facilitating Conditions (FC) is a construct within the UTAUT2 extended model, referring to individuals'
perceptions of the resources and support necessary for utilizing a technology. It reflects the extent to which
individuals believe that the required infrastructure, tools, and assistance are accessible and adequate to enable
effective use of the technology. ENUDI & Umoeshiet E. Akpan, (2023) noted a significant positive correlation
between students’ accessibility to instructional materials and greater student engagement and meaningful
contribution to the system. A learner is more likely to be influenced by the number of facilities and resources
available to use in learning and using a programming language, thus the following hypothesis was proposed.

Hs: Institutional support and resources significantly impact students' preference for Python or Java in

beginner-level programming.

Relevance to Industry (RI)

This study connects the concept of Relevance to Industry (RI) with the Job Relevance construct from TAM?2 and
the Task-Technology Fit (TTF) model. In TAM2, RI refers to the extent to which a technology supports users'
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tasks and goals in ways that are applicable to professional contexts. Romao et al., (2024) similarly highlight the
importance of aligning educational programs with industry requirements, noting that such alignment enhances
student engagement and learning through the integration of real-world applications. This connection not only
bridges the gap between academic theory and practical skills but also prepares graduates to meet the evolving
demands of the job market. RI also corresponds to the utility value dimension of Expectancy-Value Theory,
especially in contexts where employability and career advancement are key motivators. Programming languages
perceived as widely adopted in the industry, whether in enterprise systems, startup ecosystems, or trending tech
stacks, are more likely to be valued by students. Those with clear career goals may prioritize languages that align
with market trends and perceived job opportunities.

Hs: Students' perceived need to learn Python or Java is significantly influenced by their perceptions of

the languages' relevance to current industry demands and practices.

Likelihood of Future Use (LFU)

Likelihood of Future Use (LFU) serves as a proxy for the Behavioral Intention (BI) construct in UTAUT2 and the
various iterations of the TAM2. It refers to a student’s intention or likelihood to continue using technology in the
future. In a study by Parveen et al., (2024), playfulness emerged as a key factor influencing students' likelihood
of using ChatGPT in the future, followed by perceived value and performance expectancy. In the context of this
study, LFU will be assessed based on the constructs of Perceived Usefulness (PU) and Effort Expectancy/Ease of
Learning (EL), which are recognized in the literature as significant predictors of BI (Tey & Moses, 2018).

LFU captures students’ expectations regarding the future utility and frequency of use of a programming language
across academic, professional, and personal contexts. This construct is grounded in Expectancy-Value Theory
(Eccles & Wigfield, 2023), particularly the components of expectancy for success and utility value. Expectancy
for success refers to students’ beliefs about their ability to successfully use the language in the future, while utility
value reflects their perception of its relevance for achieving long-term goals. In programming education, LFU is
particularly salient. Students may evaluate a language not only for its immediate usefulness in coursework but
also for its applicability in later modules, software projects, internships, and career aspirations. A language
perceived as broadly applicable, such as being prevalent in emerging technologies, open-source communities, or
industry-standard environments, is likely to be associated with higher LFU. Therefore, the following hypothesis
is proposed.

H7: Students' likelihood of future use of Python and Java is significantly influenced by their perceptions

of the languages' usefulness and ease of learning.

Methodology

This study was conducted at a Nigerian higher education institution, targeting second-year students from various
faculties and departments. The aim was to gather students' perspectives on selecting a suitable programming
language for teaching fundamental programming concepts. A quantitative, survey-based approach was employed

using Google Forms for data collection. Google Forms was selected as the data collection instrument due to its
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accessibility, cost-effectiveness, and widespread adoption among students, aligning with findings from White,
(2015) research on students' familiarity with google applications for Education. Panchbudhe et al., (2024)
highlighted the platform's capabilities for seamless distribution, real-time data collection, and user-friendly
response tracking, characteristics that make it particularly suitable for large-scale academic surveys. Furthermore,
this choice was especially appropriate for university students in developing countries, as research by Edeh et al.,
(2022) demonstrated that the majority of these students possess Android smartphones and regularly engage with

Google applications, ensuring high participation rates and minimal technical barriers.

To distribute the questionnaire, a link to the Google Form was shared in the WhatsApp groups of the 799 enrolled
second-year students. Python and Java were chosen as baseline languages due to their global popularity, as
discussed in the literature review. Additionally, students were given the option to indicate alternative language

preferences, ensuring a broader perspective on programming language selection.

Sample and Data Collection Process

The survey targeted second-year students who had taken or were currently enrolled in a programming course,
with 308 students responding. The participants (n=308) varied in gender and age. The age range majority (72.4%)
were between 18-24 years old. Males constitute 87.9% and female 8.8%. The respondents, 271 (87.9%) were
computer science majors, with the remainder from Engineering, Information Technology, and other fields (see
Table 1). The survey was based on the UTAUT2 and TAM2 integrated frameworks by incorporating constructs
such as perceived usefulness, ease of learning, habitual use, social influence, facilitating conditions, industry
relevance, and future use. Data collection spanned four weeks, with participants informed about the study’s
purpose and providing consent before participation. Given the predominantly male and computer science-major
respondent pool, the generalizability of the findings is somewhat limited. However, very few females enroll in
STEM related course in HEIs of developing countries (BusinessDay, 2024; Sosale et al., 2023). Future research
could consider employing targeted sampling strategies to diversify the participant pool. This could include
actively engaging female students through dedicated outreach efforts. Such an approach would provide a more
representative dataset, capturing a wider range of perspectives on programming language selection. Notably, most
students from non-Computer Science departments did not participate due to limited interest in programming

courses, which contributed to non-responses.

Table 1. Demographic Profile of the Participants

Demography Variable Demography Classification Frequency (N=308) Percentage (%)

Age Range <18 11 3.6
18-24 223 72.4
25-34 71 23.1
35-44 3 1.0

Gender Male 281 87.9
Female 27 8.8

Field of Study Computer Science 271 87.9
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Demography Variable Demography Classification Frequency (N=308) Percentage (%)
Physical Sciences 16 5.2
Engineering 10 3.2
Environmental Sciences 10 32
Life Sciences 1 0.3
Data Analysis

In this study, survey responses were transformed into a standardized 5-point Likert scale, ranging from 1
(Strongly Disagree) to 5 (Strongly Agree). We selected Python's statistical libraries for their analytical
capabilities and robust ecosystem. These libraries provide exceptional functionality across data
manipulation, visualization, machine learning, and statistical analysis, encompassing descriptive
statistics, inferential testing, advanced regression modeling, and natural language processing. Moreover,
Python's open-source nature ensures broad accessibility and benefits from continuous community -driven

improvements and rigorous peer review (Joshi & Tiwari, 2023; Mahalaxmi et al., 2023).

Data analysis was conducted using both specialized software and programming tools. SmartPLS 4 (Ringle
et al., 2024) was used to perform Partial Least Squares Structural Equation Modeling (PLS-SEM), which
was selected for its ability to handle complex, multi-construct models in exploratory research settings
where theoretical frameworks are still developing (Hair & Alamer, 2022). This method enabled the
examination of both direct and indirect relationships between constructs, that aligns with the study’s
objective of understanding the key factors influencing programming language preference (PLP). Although
SmartPLS reported an SRMR value of 0.000 due to the deterministic nature of the PLP score, which was
computed as a direct average of its predictor constructs, this value did not reflect meaningful model fit.
To address this, CB-SEM-style fit indices, including Chi-Square (¥*), RMSEA, CFI, TLI, and SRMR, were
approximated using matrix-based computations in Python. These calculations utilized libraries such as
Pandas, NumPy, SciPy, and scikit-learn (PCA) to estimate the model-implied covariance structure and
corresponding fit statistics. The resulting SRMR of 0.049, along with perfect fit values for CFI (1.000),
TLI (1.000), and RMSEA (0.000), confirmed the model’s strong structural validity and robustness. This
hybrid approach ensured that the model was assessed both in terms of predictive performance (via PLS-

SEM) and overall structural quality (via CB-SEM-style fit evaluation).
The constructs used in this study include Perceived Usefulness, Ease of Learning, Habitual Use, Social
Influence, Facilitating Conditions, Relevance to Industry, and Likelihood of Future Use. Each construct

was operationalized to align with the specific context of programming language selection:

Table 2. Conceptual Framework Constructs and Descriptions

Construct  Description Definition of Hypothesis Hypothesis
PU Does usefulness affect ~ Students' belief that learning a programming language  H;
PLP? will enhance their academic or career prospects.
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EL Does learning ease Students’ perception of how intuitive, accessible and H,
affect PLP? easy a language is for beginners.

HT Does routine use The extent to which students have formed a routine or ~ Hj3
affect PLP? preference for a programming language based on prior

experience, such as exposure during K-12 education or

personal coding projects.

SI Do peers influence The impact of recommendations from peers, educators, Hy
PLP? or industry trends on students’ programming language
choices.
FC Does support or The availability of institutional support, including Hs
environment affect access to learning materials, programming tools, and
PLP? faculty guidance, which can influence students’ ease of

adopting a particular language.

RI Does real-world Whether students perceive a programming language as  Hs

relevance affect PLP?  valuable in professional settings.

LFU Will future intent Students' intent to continue using a programming H;

affect PLP? language beyond their introductory coursework.

Note. Constructs were adapted to fit the context of programming language selection.

Employing PLS-SEM, this study analyzed the direct and indirect effects of these constructs on
programming language preference (PLP). The results provide insights into how these factors collectively
shape students’ programming language choices, offering valuable implications for curriculum design and

educational policy (see Figure. 2 below for the proposed structural model).

Social inﬂuence
H4 Facilitating Conditions
H3 H5
H2- H6™
Ease of Learning Relevance to Industry
H1™ H7

Programming Language Preference

Habitual Use

Perceived Usefulness Likelihood of Future Use

Figure 2. Proposed Structural Model

Data Preparation and Screening

To screen the dataset for analysis, the participants were assessed based on their preference between Python
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and Java, we calculated difference scores for each construct by subtracting the Python-related item scores
from the corresponding Java-related item scores (e.g., PU_Diff = PU_Java - PU_Python). A score of zero
indicated neutrality, while positive or negative scores reflected a preference for Java or Python in the
dataset, respectively. Of the 308 participants, 221 showed a clear preference, with 167 (75.6%) favoring
Python and 46 (20.8%) preferring Java. A small subset of 8 participants (3.6%) displayed neutral scores,
and were excluded from the analysis leaving a final sample of 213 participants: 167 who preferred Python

and 46 who preferred Java.

For the multi-group analysis (MGA) in SmartPLS, the dataset of 213 participants was initially organized
in a wide format, with separate columns for each construct’s scores for Python and Java (e.g., PU_Python,
PU Java). However, SmartPLS requires a "grouped" structure where each observation corresponds to a
single case within a group. To meet this requirement, the dataset was reshaped into a long format, where
each participant’s responses were recorded in two rows: one for Python and one for Java. A new Group
variable was created to indicate the programming language context. The constructs were then unified
under common column names (e.g., PU, EL, HT, etc.). This restructuring resulted in 426 rows (two for
each of the 213 participants based on their preferences for java and python) and enabled the assessment
of structural relationships and measurement invariance across the Python and Java groups using PLS-

SEM.

Neutral
4%

Python
75%

Figure 3. Programming Language Preference Distribution

Results

In this study, we present the results of our analysis, beginning with examining the measurement model
evaluation, which confirms the reliability and validity of the constructs used in the study. The reliability
and convergent validity of the measurement model was assessed by examining the outer loadings and
Composite Reliability (CR) for each single-item construct across both Python and Java groups. Since each
construct was represented by a single reflective indicator, Cronbach’s Alpha and Average Variance
Extracted (AVE) were not separately reported, as CR and AVE are mathematically equivalent in this
context. Outer loadings exceeded the recommended threshold of 0.60, and CR values were satisfactory,

supporting the adequacy of the measurement model. Table 3 below presents the detailed results.
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Table 3. Convergent Validity and Reliability of Single-Item Constructs

Measurement Outer Loadings Mean (SD) Composite Reliability (CR)
Perceived Usefulness (PU)

pu_python 0.710 4.41 (0.85) 0.50
pu_java 0.777 3.74 (1.08) 0.60
Ease of Learning (EL)

el python 0.785 4.09 (0.99) 0.62
el java 0.729 3.31(1.04) 0.53
Habitual Use (HT)

ht_python 0.753 4.20 (0.91) 0.57
ht_java 0.802 3.51(1.02) 0.64
Social Influence (SI)

si_python 0.682 4.12 (0.93) 0.46
si_java 0.782 3.45 (1.00) 0.61
Facilitating Conditions (FC)

fc_python 0.640 3.54 (1.18) 0.41
fc java 0.614 3.04 (1.20) 0.38
Relevance to Industry (RI)

ri_python 0.761 4.34(0.87) 0.58
ri_java 0.682 3.78 (1.00) 0.46
Likelihood of Future Use (LFU)

Ifu_python 0.757 4.24(0.91) 0.57
Ifu_java 0.773 3.55(1.07) 0.60

Measurement Model Evaluation

To ensure the validity and reliability of the measurement model, outer loadings, internal consistency
reliability, and convergent validity were assessed. All constructs demonstrated strong outer loadings above
0.70, indicating that each item reliably represented its respective latent variable. Internal consistency
reliability was confirmed, with Composite Reliability (CR) values exceeding the 0.70 threshold across all
constructs. Convergent validity was also established, as each construct's Average Variance Extracted
(AVE) surpassed the 0.50 benchmark, demonstrating that a significant proportion of the variance was

captured by the indicators relative to the measurement error.

The reliability and validity of the measurement model were further evaluated using Outer Loadings and
Composite Reliability (CR) (see Table 3). The results demonstrate strong internal consistency and
convergent validity across all constructs. Path coefficients for the relationships between the constructs
and PLP are displayed in Figure 4. Perceived Usefulness (PU) (H:): The Composite Reliability (CR) for
Perceived Usefulness was 0.50. Students rated Python (M =4.41, SD = 0.85) as more useful than Java (M

=3.74, SD = 1.08), supporting the hypothesis that perceived usefulness influences programming language
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preference. The Outer Loading for PU was 0.710 for Python and 0.777 for Java. Ease of Learning (EL)
(H2): The CR for Ease of Learning was 0.62. Python (M = 4.09, SD = 0.99) was perceived as easier to
learn than Java (M = 3.31, SD = 1.04), suggesting that ease of learning influences language choice. The
Outer Loading for EL was 0.785 for Python and 0.729 for Java. Habitual Use (HT) (Hs): The CR for
Habitual Use was 0.57. Python (M = 4.20, SD = 0.91) was used more habitually than Java (M = 3.51, SD
= 1.02), indicating that prior experience shapes habitual use of the language. The Outer Loading for HT
was 0.753 for Python and 0.802 for Java. Social Influence (SI) (H4): The CR for Social Influence was
0.46. Python (M = 4.12, SD = 0.93) was more influenced by social factors than Java (M = 3.45, SD =
1.00), highlighting the role of social perceptions in language selection. The Outer Loading for SI was
0.682 for Python and 0.782 for Java. Facilitating Conditions (FC) (Hs): The CR for Facilitating Conditions
was 0.41. Both Python (M = 3.54, SD = 1.18) and Java (M = 3.04, SD = 1.20) had relatively low ratings
for institutional support, indicating the need for better resources for both languages. The Outer Loading
for FC was 0.640 for Python and 0.614 for Java. Relevance to Industry (RI) (Hs): The CR for Relevance
to Industry was 0.58. Python (M = 4.34, SD = 0.87) was considered more relevant to industry than Java
(M = 3.78, SD = 1.00), suggesting that industry demand influences language preference. The Outer
Loading for RI was 0.761 for Python and 0.682 for Java. Likelihood of Future Use (LFU) (H-): The CR
for Likelihood of Future Use was 0.57. Python (M = 4.24, SD = 0.91) was rated as more likely to be used
in the future than Java (M = 3.55, SD = 1.07), reinforcing the idea that perceived usefulness and ease of

learning affect continued use. The Outer Loading for LFU was 0.757 for Python and 0.773 for Java.

PLP_Score

Figure 4. Tested Structural Model with Hypothesized Paths (H1-H7)

Figure 4 illustrates the hypothesized relationships between the constructs and Programming Language

Preference (PLP). Labels (H1-H7) correspond to the hypotheses presented in Table 2. All constructs are
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modeled as direct contributors to PLP, a composite variable (PLP_Score) calculated as the mean of all
predictor constructs. The path coefficients and R? values are derived from PLS-SEM analysis in SmartPLS

4, with significance levels indicated for each relationship.

Structural Model Evaluation

Although the initial structural model was conceptualized with Programming Language Preference (PLP)
as a latent endogenous variable, in practice, PLP was computed as a composite score, the arithmetic mean
of its seven formative constructs: Perceived Usefulness (PU), Ease of Learning (EL), Habitual Use (HT),
Social Influence (SI), Facilitating Conditions (FC), Relevance to Industry (RI), and Likelihood of Future
Use (LFU). Therefore, the model represents a formative structure in which each construct contributes
directly to the computed PLP score. This does not alter the theoretical paths proposed but instead reframes
the model as an evaluation of the relative influence of each construct on programming language preference

(PLP) rather than a causal test of a latent outcome.

The structural model was evaluated to test the hypothesized relationships (H1 to H7) between constructs
and Programming Language Preference (PLP). Path coefficients were examined for significance and
directionality. Results indicated that all constructs had positive effects on PLP, with path coefficients
ranging between 0.17 and 0.24. Specifically, Relevance to Industry (RI), Perceived Usefulness (PU), and
Ease of Learning (EL) exhibited comparatively stronger effects. The model's explanatory power was
substantial, with an R-squared (r?) value of 0.997 for both Python and Java groups, indicating that the

independent variables explained nearly all the variance in PLP.

Model fit was evaluated using the Standardized Root Mean Square Residual (SRMR), a commonly used
measure in Partial Least Squares Structural Equation Modeling (PLS-SEM). The SRMR values were 0.053
for Python and 0.053 for Java, both well below the recommended threshold of 0.08. This confirms that the
model fits the data adequately and supports the validity of the hypothesized structure. However, SmartPLS
4 also reported an SRMR of 0.000 due to the deterministic construction of the PLP variable as a direct
average of the predictors, leaving no residual variance. To obtain a more meaningful assessment of model
fit, CB-SEM-style fit indices were approximated using covariance-based matrix calculations in Python.
These approximations yielded an SRMR of 0.049, alongside excellent fit indices including CFI = 1.000,
TLI =1.000, and RMSEA = 0.000, further confirming the model’s structural validity.

To further support the structural model, covariance-based SEM-style fit indices were estimated, including
Chi-Square, RMSEA, CFI, and TLI. These values were derived from an approximation of the full
covariance matrix and indicated an excellent model fit: ¥ (28) = 0.615, RMSEA = 0.000, CFI = 1.000,
and TLI = 1.000. These results confirm that the proposed structural model not only achieves strong

predictive power (as evidenced by R?) but also adheres to established structural fit standards.
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Table 5. Covariance-Based Model Fit Indices

Fit Index Value Threshold / Interpretation
Chi-Square () 0.615 Near-zero = excellent fit
Degrees of Freedom 28 -

RMSEA 0.000 <0.05 = excellent

CFI 1.000 >0.95 = excellent

TLI 1.000 >0.95 = excellent
SRMR 0.049 < 0.08 = excellent fit

Multi-Group Analysis (MGA)

To explore differences in construct effects between Python and Java groups, Multi-Group Analysis (MGA)
was performed using permutation testing. The analysis compared the path coefficients of the two groups
to determine whether the effects of the constructs on PLP significantly differed.The MGA results revealed
no statistically significant differences between the Python and Java groups for any of the constructs (p-
values > 0.05 across all comparisons). This indicates that, although there were minor variations in the
direction and magnitude of the effects, none of these differences were statistically meaningful (see table
6). For instance, Perceived Usefulness (PU) and Ease of Learning (EL) had slightly higher effects among
Python users, while Habitual Use (HT) and Social Influence (SI) showed marginally stronger effects for
Java users. However, these differences did not reach statistical significance (p-values > 0.05). These
differences, although not statistically significant, suggest that students' preferences are shaped by similar

factors, with subtle variations attributable to language-specific experiences or contextual influences.

Table 6. Path Coefficients, t-Values, and p-Values for Multi-Group Analysis (MGA)

Path Python Group Java Group Difference (B) t-value t-value p-value
Coefficient (B) Coefficient (B) (Python) (Java)
PU — PLP 0.191997 0.171997 -0.000011 -0.023588 -0.023588 0.106
EL — PLP -0.013943 0.205633 0.000052 -0.028457 -0.039517 0.329
HT — PLP -0.018581 0.188338 -0.00016 -0.025063 -0.025063 0.144
SI — PLP 0.194167 0.200314 -0.030427 -0.030427 -0.030427 0.69
FC — PLP 0.244256 -0.019417 0.000302 -0.023331 -0.023331 0.683
RI — PLP 0.171997 0.005121 -0.023588 -0.023588 -0.023588 0.106
LFU — PLP 0.185643 0.190551 0.000138 -0.023331 -0.023331 0.106

Since none of the path coefficients had statistically significant p-values (i.e., all p-values > 0.05), we can
conclude that there were no significant differences between the Python and Java groups in how the
constructs influenced Programming Language Preference (PLP). The variations observed in the direction
and magnitude of the effects were minor and not statistically significant. This suggests that both Python
and Java users are influenced by a common set of factors, with only slight variations likely due to

language-specific experiences or contextual factors.
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The MGA results support the robustness of the model and reinforce the theoretical framework that
combines UTAUT2 and TAM2 to explain programming language preference. While there are minor
variations between Python and Java users in terms of the influence of the constructs, these differences
were not statistically significant. Nevertheless, the findings offer valuable insights for educators and
curriculum designers, highlighting that both Python and Java are similarly influenced by factors such as
perceived usefulness, ease of learning, and industry relevance, which can guide programming instruction

aligned with learner expectations and industry demands.

Discussion and Implications

Interpretation of Key Findings

Based on the integrated UTAUT2 and TAM constructs in this study, we have gotten empirical insights into
students’ preferences for a beginner-level programming language. It has been revealed that there is a
consistent preference towards Python over Java. The results show that Perceived Usefulness (PU), Ease
of Learning (EL), and Relevance to Industry (RI) were the most influential factors shaping programming
language preference, which corroborate prior research that positions Python as a beginner-friendly
language with strong professional applicability (Jain et al., 2024; Ling et al., 2021). Python’s simplified
syntax and readability appear to lower the cognitive load for novices while boosting their motivation,
contributing to a more positive view of its learning effectiveness and future utilization. Despite Java’s
established role in computer science education, its comparatively lower scores in ease of learning (EL)
and perceived usefulness (PU) suggests a growing mismatch between traditional curriculum design and
student expectations. Notably, the Likelihood of Future Use (LFU) and Social Influence (SI) scores for
Python also surpassed those for Java, indicating that peer perceptions and career-oriented motivations are

increasingly influential in early programming education.
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Figure 5. Comparison of Python vs Java on Key Constructs

Nevertheless, the Multi-Group Analysis (MGA) results from the study revealed no statistically significant
differences in the effect of the key UTAUT2 and TAM2 constructs across Python and Java users,
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suggesting that the same set of psychological and contextual factors drives programming language
preference regardless of the programming language. This supports the robustness and generalizability of

the theoretical model applied.
Preferred Alternative Programming Languages

Programming education often begins with high-level languages like Python and Java due to their
simplicity, readability, and industry relevance (Birillo et al., 2024). However, recognizing that students
have different learning styles and needs, this study allowed participants to provide their preferred
alternative programming languages to Python and Java. This approach offered students the opportunity to
explore languages that might better suit their individual preferences and learning experiences. By
incorporating a broader range of programming languages, educators can create a more inclusive and
adaptable curriculum, enhancing student engagement and potentially improving their confidence and

competence in the subject.

To further investigate this, the analysis included an open-ended option for respondents to mention any
other languages they preferred. The resulting list of alternative languages, analyzed by frequency of
mention, provided deeper insights into student preferences. The survey results revealed that C++ was the
preferred alternative, with a significant number of students (over 70) selecting it. JavaScript was the
second most popular language, with just over 30 students choosing it. C Programming Language followed
with between 10 and 15 students selecting it, while PHP garnered exactly 10 mentions. Other languages
such as COBOL, Go, Ruby, Swift, and Visual Basic were mentioned less frequently, with most languages

receiving fewer than 10 mentions (see Figure 6).
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Figure 6. Frequency distribution of student’s alternative preferred programming language.

These preferences directly relate to the core construct of Programming Language Preference (PLP) in the

proposed structural model. The data supports the idea that PLP is influenced by a combination of perceived
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usefulness, ease of use, and contextual factors, consistent with the integrated TAM2 and UTAUT2
framework discussed earlier. The prominence of languages like C++ and JavaScript suggests that students
value factors beyond curriculum defaults, such as perceived industry relevance, familiarity, or alignment

with personal learning goals.

Theoretical Contributions

This research contributes to the educational technology theory by developing and validating an integrated
framework that merges UTAUT2 and TAM2, enhanced with domain-specific factors: Relevance to
Industry (RI) and Likelihood of Future Use (LFU). While UTAUT2 addresses contextual and social
influences and TAM2 focuses on cognitive assessments. This incorporation of RI and LFU strengthens the
model’s applicability for curriculum design in fast-changing fields like computing. The model also aligns
with the Expectancy-Value Theory (EVT) (see figure 7), which reinforces the notion that students'
motivation to adopt a programming language is influenced not only by ease of use and perceived
usefulness but also by their belief in the language’s future value and utility. Based on this revelation, the
study bridges a gap in technology acceptance research by applying motivational and future oriented
constructs in the context of programming language instruction which has been an area traditionally

dominated by tool based and pedagogy focused models.
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Figure 7. Motivational Factors in Programming Language Adoption (Based on EVT).
By demonstrating that both extrinsic factors, such as industry relevance and peer influence, and intrinsic
elements, like ease of learning and perceived usefulness, coming together to shape students' programming
choices, this study expands the scope of acceptance theories in educational contexts and establishes a
foundation for further research on learner-driven curriculum design.

Practical and Pedagogical Implications

The current state of programming education continues to evolve under the pressure of rapid technological
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change, shifting industry demands, and student expectations. Yet, the findings of this study reveal a
persistent inertia in curriculum structures, particularly in the selection of programming languages and the
responsiveness of instructional design. This raises a central question: how can curriculum designers ensure

programming education remains relevant, inclusive, and future-ready?

One of the most persistent challenges stems from the use of traditional programming languages, especially
Java, in introductory computer science courses (Mason et al., 2024). Despite its longstanding presence in
academia, Java appears increasingly misaligned with industry expectations, particularly in domains such
as web development, agile environments, data analysis and machine learning, as well as with the learning
needs of novice programmers (Puri, 2024). Empirical insights from this study reveal a clear preference
among students for Python which is rated highly for its simplicity, readability, and industry applicability
(Islam et al., 2024). This divergence invites a reconsideration of legacy language preferences in curriculum
design. Prioritizing Python in introductory programming courses, can help educators create inclusive
learning environments, reduce common points of frustration for beginners, and better prepare students for
fast-evolving careers that demand adaptable thinking and advanced problem-solving skills (Y. Lin & Fang,

2023).

However, introducing a more accessible language alone is not sufficient without the supporting
infrastructure to ensure its effective delivery. The study’s findings on Facilitating Conditions (a construct
from the UTAUT2 model, that measures the degree to which a student believes that sufficient
organizational and technical infrastructure exists to support the adoption and effective use of a
programming language) revealed a lack of institutional readiness in this regard. In many educational
settings, particularly those constrained by limited resources, the availability of modern learning platforms,
updated software environments, and adequately trained instructors remains a major barrier to
programming language adoption (Ansari et al., 2024). This underscores the paradox that while curriculum
reform may be conceptually sound, its implementation weakens in the absence of systemic support. As
such, investments in digital infrastructure and professional development must be seen not as an auxiliary

aspect but as a foundational and meaningful curriculum transformation.

Another under-explored but powerful implication to emerge from the findings is the importance of
students’ voice or perspective in shaping curriculum decisions. Often sidelined in favor of academic or
administrative priorities, student perspectives offer valuable insight into lived educational experiences
and career aspirations. While students may not possess expertise in curriculum design, their feedback
reflects how learning translates into confidence, competence, and career readiness (Zhu et al., 2021).
Integrating student input alongside academic research and industry forecasts ensures that curriculum
development is grounded not only in theory and labor market analytics but also in the realities of classroom

engagement.

This dialogic approach becomes even more crucial when considering how programming skills connect

with future employment. The findings suggest that making current links between course content and career
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relevance significantly enhances student motivation and persistence. When educators articulate how
fundamental concepts such as loops, functions, or data structures underpin real-world applications, such
as automation, app development, or Al, the programming education classroom transforms from an abstract
training ground into a launchpad for professional identity formation (Ho, 2024). Framing programming

education through the lens of relevance in industry is, therefore, not merely motivational but also strategic.

Perhaps the most forward-looking implication from this study concerns the role of Generative Artificial
Intelligence (GenAl) in reshaping programming pedagogy. As GenAl tools become increasingly
sophisticated and accessible, their potential to scaffold learning, reduce cognitive load, and offer
personalized guidance presents exciting opportunities for curriculum innovation (Prather et al., 2024).
Python’s compatibility with GenAl ecosystems, such as large language models, code generators, and
tutoring agents, further strengthens its suitability as the gateway programming language for novice
learners (Phung et al., 2023; Prather et al., 2025). The integration of GenAl, if done ethically and

pedagogically, can amplify both engagement and equity in programming education.

Considering these findings, curriculum designers in programming education should take targeted actions
to ensure relevance and effectiveness. This includes: adopting Python as the default introductory
programming language to enhance accessibility and alignment with industry needs; investing in the
institutional infrastructure and instructor training necessary to support such transitions; integrating student
feedback into curriculum development to reflect real learning experiences; linking programming content
to real-world applications and career pathways; and strategically integrating GenAl tools into teaching
practice to personalize and scaffold learning. By moving from a static, one-size-fits-all model to a
responsive, evidence-informed approach, programming education can become more inclusive, motivating,

and aligned with the demands of the modern workforce.

Limitations and Future Research Directions

While this study provides valuable insights, several limitations should be acknowledged. The sample was
drawn from a single institution, Modibbo Adama University, which may limit the generalizability of the
findings to other universities and educational systems. Additionally, the participant pool was
predominantly male (92%) and from Computer Science backgrounds (88%), potentially introducing
selection bias and reducing demographic representativeness. The cross-sectional nature of the study
captures student perceptions at a single point in time, without accounting for how these views evolve with
experience. Future research should adopt a multi-institutional approach, implement rigorous sampling
strategies, and include longitudinal studies to track programming language preferences across multiple
semesters. Targeted outreach to underrepresented groups, such as non-computing students and female
participants, would enhance inclusivity. Furthermore, as student perceptions may not always correlate
with actual programming proficiency, future studies should integrate performance-based metrics alongside
self-reported preferences to gain a more comprehensive understanding of programming language

effectiveness in education.
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Beyond these limitations, several promising avenues for future research exist. Investigating the role of
GenAl tools in reducing learning barriers is an emerging area of interest. Structured integration of Python,
Java, and C++ within programming curricula could also optimize skill development, ensuring students
receive balanced exposure to different paradigms. Comparative studies across academic disciplines, age
groups, and cultural contexts may provide further insights into variations in programming language
adoption and learning outcomes. Additionally, pedagogical innovations such as project-based learning,
peer collaboration and immersive learning environments should be explored for their potential to enhance
programming instruction. Addressing these areas will contribute to refining programming language
selection, improving teaching methodologies, and ultimately strengthening programming education in

HEIs.

Strategic Curriculum Design for Programming Education in Developing Countries

While programming education continues to evolve globally, higher education institutions (HEIs) in
developing countries face distinct challenges in aligning their curricula with both cognitive development
principles and rapidly shifting technological demands. This study sheds light on several instructional gaps
and pedagogical inefficiencies that limit the efficacy of programming instruction in these contexts. A
careful analysis of learner preferences, language complexity, and emerging technologies underscores the

need for a structured reimagining of programming curricula.

A key observation from this study is the underutilization of beginner-friendly programming languages
during the foundational stages of instruction. Despite Python’s global reputation for simplicity, readability,
and industry relevance, it is often not prioritized in introductory courses across many HEIs (Balreira et
al., 2023). This discrepancy raises concerns about the cognitive burden placed on novice programmers,
many of whom struggle with syntactically dense languages. By introducing Python at the outset,
institutions can significantly lower entry barriers, reduce student apprehension, and promote early
engagement with core programming constructs (Jiang et al., 2024; Murugesh et al., 2024). Its increasing
application across data science, Al, and web development further strengthens the argument for its early

curricular inclusion (Dhandayuthapani, 2024; Mehare et al., 2023).

In contrast, languages such as Java, though powerful and widely adopted, present a steeper learning curve
due to their verbosity and complexity. Yet, completely excluding Java from curricula would be
pedagogically shortsighted. Instead, this study advocates for a deliberate repositioning of Java to later
stages of instruction, such as in advance stages of object-oriented programming or software engineering
modules. This allows students to encounter Java at a point when their computational thinking has matured,
increasing their ability to grasp abstraction, inheritance, and modular design patterns without being
overwhelmed. Pedagogical sequencing, therefore, becomes a critical design principle in curriculum

restructuring.

Moreover, the strong preference expressed for C++ among learners in this study cannot be overlooked. As
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a middle-level language, C++ provides unique affordances for developing deeper conceptual
understanding by bridging high-level programming with low-level memory and performance management
tasks (Heller et al., 2016). Integrating such languages into the curriculum can sharpen students’ problem-
solving abilities and better prepare them for specialized fields like systems programming and embedded

software development (Zhao, 2021).

The advent of GenAl presents both a challenge and an opportunity for programming pedagogy. Despite
its growing use in code generation and as an instructional feedback tool, the educational sector in many
developing countries has yet to explore its full potential. GenAl tools offer promising avenues for
adaptive, personalized, and interactive learning environments, features that can significantly enhance
student engagement and mastery when appropriately integrated (Zastudil et al., 2023). However, without
structured research into its pedagogical implications, integration may remain sporadic without any
strategy. Future inquiry must focus on frameworks for responsible GenAl adoption, balancing innovation

with instructional integrity.

All together, these insights offer a roadmap for transforming programming education in HEIs within
developing countries. A curriculum that is cognitively aligned, technologically relevant, and progressively
scaffolded will not only improve student outcomes but also prepare graduates to thrive in dynamic digital
economies. Moving forward, collaboration between curriculum designers, industry experts, and

educational technologists will be essential in bringing these recommendations to life.

Ethical Considerations

This study adhered to strict ethical guidelines and complied with the Nigeria Data Protection Act (NDPA)
(Federal Government of Nigeria, 2023), to ensure participant privacy and data security. Participation was
entirely voluntary, with informed consent obtained from all respondents before data collection. In
accordance with lawful processing principles, no personal identifiable information was collected, and all
responses were fully anonymized to protect participant identities. To maintain data security, responses
were collected using Google Forms, ensuring no email addresses were recorded. Data access was restricted
to authorized researchers, and stored responses were protected within Google’s encrypted cloud
infrastructure. However, in line with storage limitation requirements, the data will be retained only for the
duration necessary for research purposes and permanently deleted thereafter. To further enhance security,
exported anonymized responses are stored in a password-protected local storage before final deletion from

Google’s cloud.

Special care was taken to ensure that demographic data did not compromise participant anonymity.
Additionally, all academic performance-related responses were analyzed in aggregate to prevent
individual identification. These measures align with international ethical standards in educational
research, ensuring transparency, confidentiality, and participant trust while adhering to Nigeria’s data

protection regulations.
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Conclusion

This study highlights the growing capacity, availability and influence of Python as the preferred language
for beginner-level programming education in Nigerian higher education institutions. Its perceived ease of
learning, usefulness, and relevance to industry make it an ideal choice for introductory programming
courses, while Java remains valuable as a strategically integrated programming language in curricula for
later or advance stages of programming education. This will provide students with a well-rounded
programming foundation. Furthermore, as programming education evolves, institutions should consider
adopting hybrid approaches that balance pedagogical effectiveness with industry demands, strategically

incorporating both Python and Java.

Additionally, exploring the role of GenAl in programming instruction presents an opportunity to
revolutionize how students can learn and be taught how to code. GenAl can improve programming
education by making it more personalized, accessible, and engaging while also developing student’s
higher-order thinking skills (Becker et al., 2023). GenAl serves as a cognitive scaffold, providing real -
time feedback, examples, and explanations. By adapting to each student’s learning pace and needs, it
tailors their educational experience, ensuring that students can progress at their own speed while receiving
the support they need to master complex programming concepts. This personalized approach not only aids
in immediate learning but also encourages critical thinking and problem-solving, essential components of

higher-order thinking.

By aligning curricula with both student preferences and technological trends, educational institutions can
create future-ready programming education that not only meets industry standards but also builds an
engaging and effective learning experience for learners. Future research could further investigate the role
of emerging technologies like GenAl in shaping programming pedagogy and student engagement, ensuring

that programming instruction remains adaptive to the evolving needs of both learners and the ind ustry.
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