
International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

133

www.ijtes.net

Selecting Suitable Programming Languages for Beginner-Level Instruction

Adaiti Allen Kadams 1 *, Solomon Sunday Oyelere 2

1 Department of Computer Science, Faculty of Computing, Modibbo Adama University, Nigeria, 0000-0002-6381-4226
2 Dept. of Computer Science, Fac. of Environment, Science and Economy, University of Exeter, United Kingdom, 0000-0001-9895-6796

* Corresponding author: Adaiti Allen Kadams (adaiti@mau.edu.ng)

Article Info

Abstract

Article History

Received:

11 June 2025

Revised:

27 October 2025

Accepted:

29 November 2025

Published:

1 January 2026

 This study examines factors influencing the preference for Python and Java as

introductory programming languages in a Nigerian higher education institution. Using

an integrated framework combining the Extended Unified Theory of Acceptance and

Use of Technology (UTAUT2) and the Technology Acceptance Model (TAM2), key

constructs such as perceived usefulness, ease of learning, social influence, and industry

relevance were identified as crucial in shaping students’ preferences. A survey of 308

second-year students revealed Python as the preferred beginner-level language, with

75.6% favoring it over Java. Python’s perceived ease of learning (M = 4.09),

usefulness (M = 4.41), and alignment with industry demands (M = 4.34) were

significantly higher than Java’s (M = 3.31, 3.74, and 3.78 respectively). Additionally,

70 students (over 22%) selected C++ as the best alternative, appreciating its ability to

provide a deeper understanding of system-level programming. Regression analysis

showed perceived usefulness (β = 0.24), ease of learning (β = 0.22), and industry

relevance (β = 0.21) as strong predictors of language preference, especially for Python.

Students’ perceptions of future use and social influence also significantly predicted

preferences, highlighting Python’s applicability to emerging technologies and career

goals. The study recommends prioritizing Python for introductory courses, retaining

Java for advanced topics, and integrating Generative AI tools to enhance programming

education outcomes.

Keywords

UTAUT2

TAM2
Generative AI (GenAI)

Pedagogical approaches

Curriculum design

Citation: Kadams, A. A. & Oyelere, S. S. (2026). Selecting suitable programming languages for beginner-level

instruction. International Journal of Technology in Education and Science (IJTES), 10(1), 133-161.

https://doi.org/10.46328/ijtes.5061

ISSN: 2651-5369 / © International Journal of Technology in Education and Science (IJTES).
This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/4.0/).

http://www.ijtes.net/
http://creativecommons.org/licenses/by-nc-sa/4.0/

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

134

Introduction

The choice of an introductory programming language for beginner-level instruction is a crucial decision that

significantly impacts students' learning experiences and outcomes (Ishaq & Alvi, 2023). While numerous

programming languages have dedicated resources for beginners, institutions must balance pedagogical

effectiveness with industry relevance when choosing a programming language. However, despite the growing

emphasis on programming education, there is a lack of consensus on the most suitable introductory language.

Many universities, particularly in Europe, have gravitated towards Java, Python, C++, and C, with Python

emerging as a preferred option due to its readability and growing industry demand as shown in a study by Siegfried

et al., (2021). He observed that Java, Python, C++, and C are the predominant languages employed in introductory

programming courses across European institutions of higher education. This trend is further corroborated by a

global survey conducted by Mason et al., (2024), which revealed that Python and Java are jointly the leading

programming language for teaching programming globally. Furthermore, a multi-group analysis conducted in a

study by Ling et al., (2021) comparing Python and Java in programming courses revealed that students

demonstrated significantly higher learning motivation, self-efficacy, and overall effectiveness in Python. The

study attributes this preference to Python’s simpler data and programming structure and shorter syntax, making it

more suitable for beginner-level programming. Collectively, these findings underscore the growing recognition

of Python’s suitability as an entry-level programming language, driven by both educational benefits and labor

market relevance.

Nevertheless, little research explicitly addresses how students perceive these choices and how evolving

technological trends influence programming pedagogy. The rapid advancements in educational technology,

including the rise of GenAI, have introduced new dynamics into programming education (Zastudil et al., 2023).

AI-driven coding assistants, automated debugging tools, and intelligent tutoring systems are transforming how

students learn to code. Recent studies indicate that GenAI can influence programming language preferences by

lowering the barriers to learning complex languages and providing personalized learning experiences (Phung et

al., 2023). This emerging trend highlights the need for a fresh evaluation of programming language selection

criteria, ensuring that introductory programming aligns with contemporary technological advancements, industry

demands and students' motivation to acquiring coding skills.

A critical question remains: What criteria guide academic institutions in selecting, maintaining, or transitioning

to specific programming languages for instructing first-year students? Identifying and understanding these criteria

is essential for informing future decisions and ensuring the effective dissemination of foundational programming

concepts to the next generation of programmers. Existing research suggests that factors such as ease of learning,

community support, industry relevance and pedagogical effectiveness play a role in language selection

(Chakraborty et al., 2021; Dela Rosa, 2023). Recent studies emphasize the importance of aligning programming

education with real-world applications and industry expectations (Romao et al., 2024). A comprehensive analysis

by Dobslaw et al., (2023) identified "market demand" as the most influential factors in language selection. This

underscores the need for a balanced approach that considers both students' learning experiences and long-term

professional applicability.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

135

Programming language selection is often predominantly guided by institutional policies or instructor preferences,

with minimal input from students (Asgari et al., 2024). However, with the increasing impact of GenAI on

programming practices and the evolving needs of the tech industry, it is increasingly crucial to incorporate

students' perspectives into curriculum decision-making processes. Recent studies emphasize that aligning

educational practices with student experiences and expectations is essential for effective integration of GenAI

tools in computing education (Keuning et al., 2024; Zastudil et al., 2023). A holistic approach that combines

insights from educators, industry professionals, and students can develop a more informed, practical, and widely

embraced choice of programming languages. Although prior research has primarily focused on the cognitive and

pedagogical aspects of programming education (Singh & Rajendran, 2024), there is limited exploration of how

students' perceptions, motivations, and acceptance of programming languages shape their learning experiences.

To address this gap, this study investigates students' perspectives on Python and Java as introductory programming

languages within a Nigerian higher education institution (HEI). By employing an integrated framework that

synthesizes the Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) and the Technology

Acceptance Model (TAM2) (Rudhumbu, 2022; Venkatesh et al., 2012), this research identifies key factors

influencing programming language preferences. The findings provide valuable empirical insights to inform a

balanced and inclusive approach to language selection, one that aligns the viewpoints of educators, industry

professionals, and students with the context of emerging technologies such as GenAI and Educational Technology

(EdTech) (Haroud & Saqri, 2025).

Alternative Programming Languages based on Learners Perspective

It is worth noting that learners in any field often lack the comprehensive understanding required to identify the

most suitable materials for effectively grasping a subject. This is particularly true in the context of programming,

where novice learners may not possess the necessary insights to determine which programming language would

be suitable for their initial exposure to coding concepts. Furthermore, many university students are primarily

driven by the goal of getting good grades or passing courses, rather than pursuing an in-depth comprehension of

the subject matter (Abbas et al., 2023). As a result, relying solely on the learner's perspective when selecting an

introductory programming language may not be the most prudent approach. Nonetheless, as illustrated by Asgari

et al. (2024) research, incorporating students' perspectives and feedback into the selection of pedagogical

approaches and programming languages for teaching coding concepts can substantially enhance learning

outcomes while developing professional growth among instructors.

In contrast, programming textbooks aimed at beginners are typically designed with the learner's perspective in

mind, aiming to foster an engaging and accessible learning experience while promoting language adoption, which

in turn boosts the book's sales. Authors of these introductory programming textbooks often base their choices on

a programming language they are intimately familiar with and comfortable using, which can potentially introduce

biases or limitations.

Therefore, no single category of criteria for choosing a programming language in instructing first-year students

and novice programmers is foolproof. While the university curriculum committee or tutors' criteria for selecting

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

136

a programming language to teach basic programming concepts to new learners may seem more valid, it is also

imperative to consider the learners' perspective, as this approach has been predominantly adopted by authors of

introductory programming textbooks. A balanced and holistic approach that blends both the teachers' and students'

perspectives on programming language selection criteria would enable institutions to make more informed and

widely acceptable choices. By incorporating insights from both stakeholders, the chosen programming language

would better align with the pedagogical goals of instructors while catering to the learning needs and preferences

of students, ultimately enhancing learners' understanding and performance in programming.

Related Works and Theoretical Framework

Related Works

Prior research incorporating both students' perspectives and university committee or tutor viewpoints in selecting

a programming language for teaching basic concepts to first-year students has not been extensively explored.

However, several studies have attempted to address this challenge of choosing an appropriate programming

language for introducing coding to new or early beginners (Perera et al., 2021). Recent studies have expanded our

understanding of programming language selection for beginners, by emphasizing the psychological, practical and

contextual implications for learners and not only the technical and pedagogical criteria. Building upon earlier

research by Kruglyk et al., (2012), and Sobral, (2021), which primarily focused on educators' perspectives, these

works incorporate learner-centric factors such as programming anxiety, cognitive load, real-world applicability,

and infrastructural limitations. Demir, (2022) investigated the impact of integrating educational programming

languages into both theoretical and practical components of programming courses. The study found that such

integration significantly reduced programming anxiety and enhanced academic achievement among students. This

suggests that a holistic approach to teaching programming, which combines theory with hands-on practice, can

alleviate common psychological barriers faced by novices. Jain et al., (2024) conducted a comparative analysis of

Python and C to determine their suitability for beginners. The study highlighted Python's simplicity, readability,

and extensive library support as key factors that facilitate a smoother learning curve for novices. In contrast, while

C offers insights into low-level programming and memory management, its complexity may pose challenges for

beginners. Therefore, Python was recommended as a more accessible entry point for those new to programming.

Fulton et al., (2021) explored the adoption of Rust, a secure programming language, through interviews and

surveys with professional developers. While Rust offers benefits like enhanced security and performance, the

study identified challenges such as a steep learning curve and limited library support. These findings underscore

the importance of balancing language features with learner accessibility when selecting a programming language

for educational purposes. Eteng et al., (2022) added a critical dimension to this discourse by focusing on the

challenges faced by undergraduate learners in developing countries. Through a systematic review, they proposed

a model for effective programming instruction that leverages mobile and online compilers to improve

accessibility, especially in resource-constrained environments. Their work underscores the importance of

considering infrastructural realities alongside pedagogical and psychological factors, reinforcing the need for

practical, inclusive, and context-aware approaches to programming education.

Collectively, these studies advocate for a learner-centered approach in choosing introductory programming

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

137

languages. They emphasize the need to consider psychological, technical, and contextual factors to ensure that

the selected language not only imparts programming concepts effectively but also supports learner confidence,

accessibility, and overall engagement.

Theoretical Framework

The selection of an introductory programming language significantly influences students' learning experiences

and their long-term proficiency in software development. Traditional educational theories offer valuable insights

into the cognitive and pedagogical dimensions of programming instruction. However, they often overlook crucial

factors such as student perceptions, motivations, and technology adoption behaviours. To bridge this gap, this

study adopts an integrated framework that combines the Extended Unified Theory of Acceptance and Use of

Technology (UTAUT2) and the Technology Acceptance Model (TAM2) to evaluate the factors shaping students'

programming language preferences. In the proposed structural model, Programming Language Preference (PLP)

serves as the central dependent construct. All constructs derived from UTAUT2 and TAM2, such as perceived

ease of use, habitual use, social influence, facilitating conditions, and perceived usefulness, are hypothesized to

influence students’ PLP. Both TAM2 and UTAUT2 were originally developed to predict technology adoption in

organizational contexts but have been successfully applied in educational settings to understand technology

acceptance among students and educators (Rudhumbu, 2022; Venkatesh et al., 2012). To address the limitations

of each model, this study proposes a synthesized framework that leverages the cognitive focus of TAM2 and the

contextual breadth of UTAUT2, supplemented by constructs related to intrinsic motivation, habitual behaviours,

and industry relevance. TAM2 focuses on individual cognitive factors such as Perceived Usefulness (PU) and

Ease of Learning (EL) (adapted from Perceived Ease of Use (PEU)), which are central to understanding students’

academic performance and career goals. However, it neglects social and contextual influences, such as peer input

and resource availability, that are often vital in educational settings. Conversely, UTAUT2 incorporates constructs

like Social Influence (SI), Facilitating Conditions (FC), and Habitual Use (HT), providing a broader perspective

on the social and contextual dimensions of technology adoption. Despite its broader scope, UTAUT2

underemphasizes intrinsic motivation and the relevance of specific technologies to professional applications.

To enhance the explanatory power of the integrated framework, this study incorporates two adapted constructs:

Relevance to Industry (RI) and Likelihood of Future Use (LFU). These constructs extend the traditional

dimensions of TAM2 and UTAUT2 to better fit educational contexts. RI can be seen as an extension from TAM2

and the Task-Technology Fit (TTF) model, emphasizing how students perceive the value of a programming

language in relation to industry trends and employability. LFU, meanwhile, aligns with and deepens the

Behavioural Intention component of both models by capturing students’ expectations about the long-term

applicability and relevance of a programming language across academic and professional contexts. For instance,

Python’s simplified syntax and intuitive learning curve may align with TAM2 constructs, while UTAUT2 explains

how social and institutional factors influence its popularity. The framework is further built by insights from

Cognitive Load Theory and Expectancy-Value Theory. Cognitive Load Theory posits that reducing cognitive

barriers, such as complex syntax, facilitates efficient learning by minimizing extraneous cognitive load (Quintero-

Manes & Vieira, 2024; Sandoval-Medina et al., 2024). Expectancy-Value Theory, on the other hand, highlights

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

138

that students’ motivation to engage with a programming language is shaped by their expectations of success, the

perceived value of the language, and its alignment with their future goals (Schoeffel et al., 2021). By combining

the strengths of TAM2 and UTAUT2 while integrating overlooked factors related to motivation and industry

relevance, this study establishes a strong framework for understanding programming language adoption among

novice learners. This multifaceted approach not only strengthens the analytical depth of the study but also yields

practical implications for educators and curriculum designers. Specifically, aligning instructional strategies with

students’ cognitive capacities, motivational drivers, and social-contextual influences allows for more informed

and inclusive decisions regarding the selection of introductory programming languages. Ultimately, this

framework aims to enhance student engagement, support meaningful learning outcomes, and ensure curricular

relevance to evolving industry demands.

Figure 1. Theoretical Framework Integrating TAM2, UTAUT2, and Pedagogical Theories

Hypotheses Development

Perceived Usefulness (PU)

Perceived Usefulness (PU), derived from the TAM2, corresponds to the concept of performance expectancy. It

refers to the degree to which an individual believes that using a particular tool, system, or technology will enhance

their performance or help them achieve specific goals (Penney et al., 2021). In this context, students’ beliefs about

how Python or Java might contribute to achieving academic or professional goals are crucial. These beliefs often

emphasize practical benefits such as enhancing academic performance, improving understanding of programming

concepts, and supporting future projects. Accordingly, the following hypothesis is proposed:

H₁: There is a significant relationship between students' perceived usefulness of Python and Java and

their preference for either language in beginner-level programming.

Ease of Learning (EL)

According to Nguyen et al. (2024), perceived ease of learning (or use) derived from the TAM2 model, denotes

the extent to which an individual believes that using a certain technology requires minimal effort. Lin (2022)

stressed this factor as a positive influence on students’ learning attitudes. This study aims to explore how students’

perceived ease of learning influences their preferences for either Python or Java. The hypothesis is stated as:

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

139

H₂: Students' perceived ease of learning Python and Java significantly influences their preference for

either language in beginner-level programming.

Habitual Use (HT)

Habitual Use (HT), as conceptualized in the UTAUT2 framework, reflects the extent to which individuals use a

technology automatically due to repeated exposure and experience over time (Venkatesh et al., 2012). Although

HT may appear less relevant at the early stages of learning, Iftikhar et al., (2022) argue that students who regularly

engaged with these tools developed better problem-solving skills and a deeper understanding of programming

concepts. This leads to the following hypothesis:

H₃: Students who regularly engaged with a programming languages significantly shape their habitual use

of the languages, thereby influencing their preference for either Python or Java in beginner-level

programming.

Social Influence (SI)

In UTAUT2, Social Influence (SI) refers to the degree to which individuals perceive advice or views from

important others, such as peers, family members, or instructors who believe they should use a particular

technology. In a study by Shahzad et al., (2023) they highlighted how such social expectations such as social

media and peers can powerfully affect a student's technology adoption. Therefore, the study proposes the

following hypothesis:

H₄: Social influence significantly affects students’ choice between Python and Java for beginner-level

programming.

Facilitating Conditions (FC)

Facilitating Conditions (FC) is a construct within the UTAUT2 extended model, referring to individuals'

perceptions of the resources and support necessary for utilizing a technology. It reflects the extent to which

individuals believe that the required infrastructure, tools, and assistance are accessible and adequate to enable

effective use of the technology. ENUDI & Umoeshiet E. Akpan, (2023) noted a significant positive correlation

between students’ accessibility to instructional materials and greater student engagement and meaningful

contribution to the system. A learner is more likely to be influenced by the number of facilities and resources

available to use in learning and using a programming language, thus the following hypothesis was proposed.

H₅: Institutional support and resources significantly impact students' preference for Python or Java in

beginner-level programming.

Relevance to Industry (RI)

This study connects the concept of Relevance to Industry (RI) with the Job Relevance construct from TAM2 and

the Task-Technology Fit (TTF) model. In TAM2, RI refers to the extent to which a technology supports users'

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

140

tasks and goals in ways that are applicable to professional contexts. Romao et al., (2024) similarly highlight the

importance of aligning educational programs with industry requirements, noting that such alignment enhances

student engagement and learning through the integration of real-world applications. This connection not only

bridges the gap between academic theory and practical skills but also prepares graduates to meet the evolving

demands of the job market. RI also corresponds to the utility value dimension of Expectancy-Value Theory,

especially in contexts where employability and career advancement are key motivators. Programming languages

perceived as widely adopted in the industry, whether in enterprise systems, startup ecosystems, or trending tech

stacks, are more likely to be valued by students. Those with clear career goals may prioritize languages that align

with market trends and perceived job opportunities.

H₆: Students' perceived need to learn Python or Java is significantly influenced by their perceptions of

the languages' relevance to current industry demands and practices.

Likelihood of Future Use (LFU)

Likelihood of Future Use (LFU) serves as a proxy for the Behavioral Intention (BI) construct in UTAUT2 and the

various iterations of the TAM2. It refers to a student’s intention or likelihood to continue using technology in the

future. In a study by Parveen et al., (2024), playfulness emerged as a key factor influencing students' likelihood

of using ChatGPT in the future, followed by perceived value and performance expectancy. In the context of this

study, LFU will be assessed based on the constructs of Perceived Usefulness (PU) and Effort Expectancy/Ease of

Learning (EL), which are recognized in the literature as significant predictors of BI (Tey & Moses, 2018).

LFU captures students’ expectations regarding the future utility and frequency of use of a programming language

across academic, professional, and personal contexts. This construct is grounded in Expectancy-Value Theory

(Eccles & Wigfield, 2023), particularly the components of expectancy for success and utility value. Expectancy

for success refers to students’ beliefs about their ability to successfully use the language in the future, while utility

value reflects their perception of its relevance for achieving long-term goals. In programming education, LFU is

particularly salient. Students may evaluate a language not only for its immediate usefulness in coursework but

also for its applicability in later modules, software projects, internships, and career aspirations. A language

perceived as broadly applicable, such as being prevalent in emerging technologies, open-source communities, or

industry-standard environments, is likely to be associated with higher LFU. Therefore, the following hypothesis

is proposed.

H₇: Students' likelihood of future use of Python and Java is significantly influenced by their perceptions

of the languages' usefulness and ease of learning.

Methodology

This study was conducted at a Nigerian higher education institution, targeting second-year students from various

faculties and departments. The aim was to gather students' perspectives on selecting a suitable programming

language for teaching fundamental programming concepts. A quantitative, survey-based approach was employed

using Google Forms for data collection. Google Forms was selected as the data collection instrument due to its

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

141

accessibility, cost-effectiveness, and widespread adoption among students, aligning with findings from White,

(2015) research on students' familiarity with google applications for Education. Panchbudhe et al., (2024)

highlighted the platform's capabilities for seamless distribution, real-time data collection, and user-friendly

response tracking, characteristics that make it particularly suitable for large-scale academic surveys. Furthermore,

this choice was especially appropriate for university students in developing countries, as research by Edeh et al.,

(2022) demonstrated that the majority of these students possess Android smartphones and regularly engage with

Google applications, ensuring high participation rates and minimal technical barriers.

To distribute the questionnaire, a link to the Google Form was shared in the WhatsApp groups of the 799 enrolled

second-year students. Python and Java were chosen as baseline languages due to their global popularity, as

discussed in the literature review. Additionally, students were given the option to indicate alternative language

preferences, ensuring a broader perspective on programming language selection.

Sample and Data Collection Process

The survey targeted second-year students who had taken or were currently enrolled in a programming course,

with 308 students responding. The participants (n=308) varied in gender and age. The age range majority (72.4%)

were between 18-24 years old. Males constitute 87.9% and female 8.8%. The respondents, 271 (87.9%) were

computer science majors, with the remainder from Engineering, Information Technology, and other fields (see

Table 1). The survey was based on the UTAUT2 and TAM2 integrated frameworks by incorporating constructs

such as perceived usefulness, ease of learning, habitual use, social influence, facilitating conditions, industry

relevance, and future use. Data collection spanned four weeks, with participants informed about the study’s

purpose and providing consent before participation. Given the predominantly male and computer science-major

respondent pool, the generalizability of the findings is somewhat limited. However, very few females enroll in

STEM related course in HEIs of developing countries (BusinessDay, 2024; Sosale et al., 2023). Future research

could consider employing targeted sampling strategies to diversify the participant pool. This could include

actively engaging female students through dedicated outreach efforts. Such an approach would provide a more

representative dataset, capturing a wider range of perspectives on programming language selection. Notably, most

students from non-Computer Science departments did not participate due to limited interest in programming

courses, which contributed to non-responses.

Table 1. Demographic Profile of the Participants

Demography Variable Demography Classification Frequency (N=308) Percentage (%)

Age Range < 18 11 3.6

18-24 223 72.4

25-34 71 23.1

35-44 3 1.0

Gender Male 281 87.9

Female 27 8.8

Field of Study Computer Science 271 87.9

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

142

Demography Variable Demography Classification Frequency (N=308) Percentage (%)

Physical Sciences 16 5.2

Engineering 10 3.2

Environmental Sciences 10 3.2

Life Sciences 1 0.3

Data Analysis

In this study, survey responses were transformed into a standardized 5 -point Likert scale, ranging from 1

(Strongly Disagree) to 5 (Strongly Agree). We selected Python's statistical libraries for their analytical

capabilities and robust ecosystem. These libraries provide exceptional functionality across data

manipulation, visualization, machine learning, and statistical analysis, encompassing descriptive

statistics, inferential testing, advanced regression modeling, and natural language processing. Moreover,

Python's open-source nature ensures broad accessibility and benefits from continuous community -driven

improvements and rigorous peer review (Joshi & Tiwari, 2023; Mahalaxmi et al., 2023).

Data analysis was conducted using both specialized software and programming tools. SmartPLS 4 (Ringle

et al., 2024) was used to perform Partial Least Squares Structural Equation Modeling (PLS -SEM), which

was selected for its ability to handle complex, multi-construct models in exploratory research settings

where theoretical frameworks are still developing (Hair & Alamer, 2022). This method enabled the

examination of both direct and indirect relationships between constructs, that aligns with the study’s

objective of understanding the key factors influencing programming language preference (PLP). Although

SmartPLS reported an SRMR value of 0.000 due to the deterministic nature of the PLP score, which was

computed as a direct average of its predictor constructs , this value did not reflect meaningful model fit.

To address this, CB-SEM-style fit indices, including Chi-Square (χ²), RMSEA, CFI, TLI, and SRMR, were

approximated using matrix-based computations in Python. These calculations utilized libraries such as

Pandas, NumPy, SciPy, and scikit-learn (PCA) to estimate the model-implied covariance structure and

corresponding fit statistics. The resulting SRMR of 0.049, along with perfect fit values for CFI (1.000),

TLI (1.000), and RMSEA (0.000), confirmed the model’s strong structural validity and robustness. This

hybrid approach ensured that the model was assessed both in terms of predictive performance (via PLS -

SEM) and overall structural quality (via CB-SEM-style fit evaluation).

The constructs used in this study include Perceived Usefulness, Ease of Learning, Habitual Use, Social

Influence, Facilitating Conditions, Relevance to Industry, and Likelihood of Future Use. Each construct

was operationalized to align with the specific context of programming language selection:

Table 2. Conceptual Framework Constructs and Descriptions

Construct Description Definition of Hypothesis Hypothesis

PU Does usefulness affect

PLP?

Students' belief that learning a programming language

will enhance their academic or career prospects.

H1

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

143

EL Does learning ease

affect PLP?

Students’ perception of how intuitive, accessible and

easy a language is for beginners.

H2

HT Does routine use

affect PLP?

The extent to which students have formed a routine or

preference for a programming language based on prior

experience, such as exposure during K-12 education or

personal coding projects.

H3

SI Do peers influence

PLP?

The impact of recommendations from peers, educators,

or industry trends on students’ programming language

choices.

H4

FC Does support or

environment affect

PLP?

The availability of institutional support, including

access to learning materials, programming tools, and

faculty guidance, which can influence students’ ease of

adopting a particular language.

H5

RI Does real-world

relevance affect PLP?

Whether students perceive a programming language as

valuable in professional settings.

H6

LFU Will future intent

affect PLP?

Students' intent to continue using a programming

language beyond their introductory coursework.

H7

Note. Constructs were adapted to fit the context of programming language selection.

Employing PLS-SEM, this study analyzed the direct and indirect effects of these constructs on

programming language preference (PLP). The results provide insights into how these factors collectively

shape students’ programming language choices, offering valuable implications for curriculum design and

educational policy (see Figure. 2 below for the proposed structural model).

Figure 2. Proposed Structural Model

Data Preparation and Screening

To screen the dataset for analysis, the participants were assessed based on their preference between Python

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

144

and Java, we calculated difference scores for each construct by subtracting the Python -related item scores

from the corresponding Java-related item scores (e.g., PU_Diff = PU_Java - PU_Python). A score of zero

indicated neutrality, while positive or negative scores reflected a preference for Java or Python in the

dataset, respectively. Of the 308 participants, 221 showed a clear preference, with 167 (75.6%) favoring

Python and 46 (20.8%) preferring Java. A small subset of 8 participants (3.6%) displayed neu tral scores,

and were excluded from the analysis leaving a final sample of 213 participants: 167 who preferred Python

and 46 who preferred Java.

For the multi-group analysis (MGA) in SmartPLS, the dataset of 213 participants was initially organized

in a wide format, with separate columns for each construct’s scores for Python and Java (e.g., PU_Python,

PU_Java). However, SmartPLS requires a "grouped" structure where each observation corresponds to a

single case within a group. To meet this requirement, the dataset was reshaped into a long format, where

each participant’s responses were recorded in two rows: one for Python and one for Java. A new Gro up

variable was created to indicate the programming language context. The constructs were then unified

under common column names (e.g., PU, EL, HT, etc.). This restructuring resulted in 426 rows (two for

each of the 213 participants based on their preferences for java and python) and enabled the assessment

of structural relationships and measurement invariance across the Python and Java groups using PLS -

SEM.

Figure 3. Programming Language Preference Distribution

Results

In this study, we present the results of our analysis, beginning with examining the measurement model

evaluation, which confirms the reliability and validity of the constructs used in the study. The reliability

and convergent validity of the measurement model was assessed by examining the outer loadings and

Composite Reliability (CR) for each single-item construct across both Python and Java groups. Since each

construct was represented by a single reflective indicator, Cronbach’s Alpha and Average Variance

Extracted (AVE) were not separately reported, as CR and AVE are mathematically equivalent in this

context. Outer loadings exceeded the recommended threshold of 0.60, and CR values were satisfactory,

supporting the adequacy of the measurement model. Table 3 below presents the detailed results.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

145

Table 3. Convergent Validity and Reliability of Single-Item Constructs

Measurement Outer Loadings Mean (SD) Composite Reliability (CR)

Perceived Usefulness (PU)

pu_python 0.710 4.41 (0.85) 0.50

pu_java 0.777 3.74 (1.08) 0.60

Ease of Learning (EL)

el_python 0.785 4.09 (0.99) 0.62

el_java 0.729 3.31 (1.04) 0.53

Habitual Use (HT)

ht_python 0.753 4.20 (0.91) 0.57

ht_java 0.802 3.51 (1.02) 0.64

Social Influence (SI)

si_python 0.682 4.12 (0.93) 0.46

si_java 0.782 3.45 (1.00) 0.61

Facilitating Conditions (FC)

fc_python 0.640 3.54 (1.18) 0.41

fc_java 0.614 3.04 (1.20) 0.38

Relevance to Industry (RI)

ri_python 0.761 4.34 (0.87) 0.58

ri_java 0.682 3.78 (1.00) 0.46

Likelihood of Future Use (LFU)

lfu_python 0.757 4.24 (0.91) 0.57

lfu_java 0.773 3.55 (1.07) 0.60

Measurement Model Evaluation

To ensure the validity and reliability of the measurement model, outer loadings, internal consistency

reliability, and convergent validity were assessed. All constructs demonstrated strong outer loadings above

0.70, indicating that each item reliably represented its respective latent variable. Internal consistency

reliability was confirmed, with Composite Reliability (CR) values exceeding the 0.70 threshold across all

constructs. Convergent validity was also established, as each construct's Average Variance Extracted

(AVE) surpassed the 0.50 benchmark, demonstrating that a significant proportion of the variance was

captured by the indicators relative to the measurement error.

The reliability and validity of the measurement model were further evaluated using Outer Loadings and

Composite Reliability (CR) (see Table 3). The results demonstrate strong internal consistency and

convergent validity across all constructs. Path coefficients for the relationships between the constructs

and PLP are displayed in Figure 4. Perceived Usefulness (PU) (H₁): The Composite Reliability (CR) for

Perceived Usefulness was 0.50. Students rated Python (M = 4.41, SD = 0.85) as more useful than Java (M

= 3.74, SD = 1.08), supporting the hypothesis that perceived usefulness influences programming language

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

146

preference. The Outer Loading for PU was 0.710 for Python and 0.777 for Java. Ease of Learning (EL)

(H₂): The CR for Ease of Learning was 0.62. Python (M = 4.09, SD = 0.99) was perceived as easier to

learn than Java (M = 3.31, SD = 1.04), suggesting that ease of learning influences language choice. The

Outer Loading for EL was 0.785 for Python and 0.729 for Java. Habitual Use (HT) (H₃): The CR for

Habitual Use was 0.57. Python (M = 4.20, SD = 0.91) was used more habitually than Java (M = 3.51, SD

= 1.02), indicating that prior experience shapes habitual use of the language. The Outer Loading for HT

was 0.753 for Python and 0.802 for Java. Social Influence (SI) (H₄): The CR for Social Influence was

0.46. Python (M = 4.12, SD = 0.93) was more influenced by soc ial factors than Java (M = 3.45, SD =

1.00), highlighting the role of social perceptions in language selection. The Outer Loading for SI was

0.682 for Python and 0.782 for Java. Facilitating Conditions (FC) (H₅): The CR for Facilitating Conditions

was 0.41. Both Python (M = 3.54, SD = 1.18) and Java (M = 3.04, SD = 1.20) had relatively low ratings

for institutional support, indicating the need for better resources for both languages. The Outer Loading

for FC was 0.640 for Python and 0.614 for Java. Relevance to Industry (RI) (H₆): The CR for Relevance

to Industry was 0.58. Python (M = 4.34, SD = 0.87) was considered more relevant to industry than Java

(M = 3.78, SD = 1.00), suggesting that industry demand influences language preference. The Outer

Loading for RI was 0.761 for Python and 0.682 for Java. Likelihood of Future Use (LFU) (H₇): The CR

for Likelihood of Future Use was 0.57. Python (M = 4.24, SD = 0.91) was rated as more likely to be used

in the future than Java (M = 3.55, SD = 1.07), reinforcing the idea that perceived usefulness and ease of

learning affect continued use. The Outer Loading for LFU was 0.757 for Python and 0.773 for Java.

Figure 4. Tested Structural Model with Hypothesized Paths (H1–H7)

Figure 4 illustrates the hypothesized relationships between the constructs and Programming Language

Preference (PLP). Labels (H1–H7) correspond to the hypotheses presented in Table 2. All constructs are

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

147

modeled as direct contributors to PLP, a composite variable (PLP_Score) calculated as the mean of all

predictor constructs. The path coefficients and R² values are derived from PLS-SEM analysis in SmartPLS

4, with significance levels indicated for each relationship.

Structural Model Evaluation

Although the initial structural model was conceptualized with Programming Language Preference (PLP)

as a latent endogenous variable, in practice, PLP was computed as a composite score, the arithmetic mean

of its seven formative constructs: Perceived Usefulness (PU), Ease of Learning (EL), Habitual Use (HT),

Social Influence (SI), Facilitating Conditions (FC), Relevance to Industry (RI), and Likelihood of Future

Use (LFU). Therefore, the model represents a formative structure in which each construct contribu tes

directly to the computed PLP score. This does not alter the theoretical paths proposed but instead reframes

the model as an evaluation of the relative influence of each construct on programming language preference

(PLP) rather than a causal test of a latent outcome.

The structural model was evaluated to test the hypothesized relationships (H1 to H7) between constructs

and Programming Language Preference (PLP). Path coefficients were examined for significance and

directionality. Results indicated that all constructs had positive effects on PLP, with path coefficients

ranging between 0.17 and 0.24. Specifically, Relevance to Industry (RI), Perceived Usefulness (PU), and

Ease of Learning (EL) exhibited comparatively stronger effects. The model's explanatory power was

substantial, with an R-squared (r²) value of 0.997 for both Python and Java groups, indicating that the

independent variables explained nearly all the variance in PLP.

Model fit was evaluated using the Standardized Root Mean Square Residual (SRMR), a commonly used

measure in Partial Least Squares Structural Equation Modeling (PLS-SEM). The SRMR values were 0.053

for Python and 0.053 for Java, both well below the recommended threshold of 0.08. This confirms that the

model fits the data adequately and supports the validity of the hypothesized structure. However, SmartPLS

4 also reported an SRMR of 0.000 due to the deterministic construction of the PLP variable as a direct

average of the predictors, leaving no residual variance. To obtain a more meaningful assessment of model

fit, CB-SEM-style fit indices were approximated using covariance-based matrix calculations in Python.

These approximations yielded an SRMR of 0.049, alongside excellent fit indices including CFI = 1.000,

TLI = 1.000, and RMSEA = 0.000, further confirming the model’s structural validity.

To further support the structural model, covariance-based SEM-style fit indices were estimated, including

Chi-Square, RMSEA, CFI, and TLI. These values were derived from an approximation of the full

covariance matrix and indicated an excellent model fit: χ² (28) = 0.615, RMSEA = 0.000, CFI = 1.000,

and TLI = 1.000. These results confirm that the proposed structural model not only achieves strong

predictive power (as evidenced by R²) but also adheres to established structural fit standards.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

148

Table 5. Covariance-Based Model Fit Indices

Fit Index Value Threshold / Interpretation

Chi-Square (χ²) 0.615 Near-zero = excellent fit

Degrees of Freedom 28 –

RMSEA 0.000 ≤ 0.05 = excellent

CFI 1.000 ≥ 0.95 = excellent

TLI 1.000 ≥ 0.95 = excellent

SRMR 0.049 ≤ 0.08 = excellent fit

Multi-Group Analysis (MGA)

To explore differences in construct effects between Python and Java groups, Multi -Group Analysis (MGA)

was performed using permutation testing. The analysis compared the path coefficients of the two groups

to determine whether the effects of the constructs on PLP significantly differed.The MGA results revealed

no statistically significant differences between the Python and Java groups for any of the constructs (p -

values > 0.05 across all comparisons). This indicates that, although there were minor variation s in the

direction and magnitude of the effects, none of these differences were statistically meaningful (see table

6). For instance, Perceived Usefulness (PU) and Ease of Learning (EL) had slightly higher effects among

Python users, while Habitual Use (HT) and Social Influence (SI) showed marginally stronger effects for

Java users. However, these differences did not reach statistical significance (p -values > 0.05). These

differences, although not statistically significant, suggest that students' preference s are shaped by similar

factors, with subtle variations attributable to language-specific experiences or contextual influences.

Table 6. Path Coefficients, t-Values, and p-Values for Multi-Group Analysis (MGA)

Path Python Group

Coefficient (β)

Java Group

Coefficient (β)

Difference (β) t-value

(Python)

t-value

(Java)

p-value

PU → PLP 0.191997 0.171997 -0.000011 -0.023588 -0.023588 0.106

EL → PLP -0.013943 0.205633 0.000052 -0.028457 -0.039517 0.329

HT → PLP -0.018581 0.188338 -0.00016 -0.025063 -0.025063 0.144

SI → PLP 0.194167 0.200314 -0.030427 -0.030427 -0.030427 0.69

FC → PLP 0.244256 -0.019417 0.000302 -0.023331 -0.023331 0.683

RI → PLP 0.171997 0.005121 -0.023588 -0.023588 -0.023588 0.106

LFU → PLP 0.185643 0.190551 0.000138 -0.023331 -0.023331 0.106

Since none of the path coefficients had statistically significant p-values (i.e., all p-values > 0.05), we can

conclude that there were no significant differences between the Python and Java groups in how the

constructs influenced Programming Language Preference (PLP). The variations observed in the direction

and magnitude of the effects were minor and not statistically significant. This suggests that both Python

and Java users are influenced by a common set of factors, with only slight variations likely du e to

language-specific experiences or contextual factors.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

149

The MGA results support the robustness of the model and reinforce the theoretical framework that

combines UTAUT2 and TAM2 to explain programming language preference. While there are minor

variations between Python and Java users in terms of the influence o f the constructs, these differences

were not statistically significant. Nevertheless, the findings offer valuable insights for educators and

curriculum designers, highlighting that both Python and Java are similarly influenced by factors such as

perceived usefulness, ease of learning, and industry relevance, which can guide programming instruction

aligned with learner expectations and industry demands.

Discussion and Implications

Interpretation of Key Findings

Based on the integrated UTAUT2 and TAM constructs in this study, we have gotten empirical insights into

students’ preferences for a beginner-level programming language. It has been revealed that there is a

consistent preference towards Python over Java. The results show that Perceived Usefulness (PU), Ease

of Learning (EL), and Relevance to Industry (RI) were the most influential factors shaping programming

language preference, which corroborate prior research that positions Python as a beginner -friendly

language with strong professional applicability (Jain et al., 2024; Ling et al., 2021). Python’s simplified

syntax and readability appear to lower the cognitive load for novices while boosting their motivation,

contributing to a more positive view of its learning effectiveness and future utilization. Despite Java’s

established role in computer science education, its comparatively lower scores in ease of learning (EL)

and perceived usefulness (PU) suggests a growing mismatch between traditional curriculum desi gn and

student expectations. Notably, the Likelihood of Future Use (LFU) and Social Influence (SI) scores for

Python also surpassed those for Java, indicating that peer perceptions and career-oriented motivations are

increasingly influential in early programming education.

Figure 5. Comparison of Python vs Java on Key Constructs

Nevertheless, the Multi-Group Analysis (MGA) results from the study revealed no statistically significant

differences in the effect of the key UTAUT2 and TAM2 constructs across Python and Java users,

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

150

suggesting that the same set of psychological and contextual factors drives programming language

preference regardless of the programming language. This supports the robustness and generalizability of

the theoretical model applied.

Preferred Alternative Programming Languages

Programming education often begins with high-level languages like Python and Java due to their

simplicity, readability, and industry relevance (Birillo et al., 2024). However, recognizing that students

have different learning styles and needs, this study allowed participants to provide their preferred

alternative programming languages to Python and Java. This approach offered students the opportunity to

explore languages that might better suit their individual preferences and learning experiences. By

incorporating a broader range of programming languages, educators can create a more inclusive and

adaptable curriculum, enhancing student engagement and potentially improving their confidence and

competence in the subject.

To further investigate this, the analysis included an open-ended option for respondents to mention any

other languages they preferred. The resulting list of alternative languages, analyzed by frequency of

mention, provided deeper insights into student preferences. The survey results revealed that C++ was the

preferred alternative, with a significant number of students (over 70) selecting it. JavaScript was the

second most popular language, with just over 30 students choosing it. C Programming Language follo wed

with between 10 and 15 students selecting it, while PHP garnered exactly 10 mentions. Other languages

such as COBOL, Go, Ruby, Swift, and Visual Basic were mentioned less frequently, with most languages

receiving fewer than 10 mentions (see Figure 6).

Figure 6. Frequency distribution of student’s alternative preferred programming language.

These preferences directly relate to the core construct of Programming Language Preference (PLP) in the

proposed structural model. The data supports the idea that PLP is influenced by a combination of perceived

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

151

usefulness, ease of use, and contextual factors, consistent with the integrated TAM2 and UTAUT2

framework discussed earlier. The prominence of languages like C++ and JavaScript suggests that students

value factors beyond curriculum defaults, such as perceived industry relevance, familiarity, or alignment

with personal learning goals.

Theoretical Contributions

This research contributes to the educational technology theory by developing and validating an integrated

framework that merges UTAUT2 and TAM2, enhanced with domain-specific factors: Relevance to

Industry (RI) and Likelihood of Future Use (LFU). While UTAUT2 addresses contextual and social

influences and TAM2 focuses on cognitive assessments. This incorporation of RI and LFU strengthens the

model’s applicability for curriculum design in fast-changing fields like computing. The model also aligns

with the Expectancy-Value Theory (EVT) (see figure 7), which reinforces the notion that students'

motivation to adopt a programming language is influenced not only by ease of use and perceived

usefulness but also by their belief in the language’s future value and uti lity. Based on this revelation, the

study bridges a gap in technology acceptance research by applying motivational and future oriented

constructs in the context of programming language instruction which has been an area traditionally

dominated by tool based and pedagogy focused models.

Figure 7. Motivational Factors in Programming Language Adoption (Based on EVT).

By demonstrating that both extrinsic factors, such as industry relevance and peer influence, and intrinsic

elements, like ease of learning and perceived usefulness, coming together to shape students' programming

choices, this study expands the scope of acceptance theories in educational contexts and establishes a

foundation for further research on learner-driven curriculum design.

Practical and Pedagogical Implications

The current state of programming education continues to evolve under the pressure of rapid technological

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

152

change, shifting industry demands, and student expectations. Yet, the findings of this study reveal a

persistent inertia in curriculum structures, particularly in the selection of programming languages and the

responsiveness of instructional design. This raises a central question: how can curriculum designers ensure

programming education remains relevant, inclusive, and future-ready?

One of the most persistent challenges stems from the use of traditional programming languages, especially

Java, in introductory computer science courses (Mason et al., 2024). Despite its longstanding presence in

academia, Java appears increasingly misaligned with industry expectations, particularly in domains such

as web development, agile environments, data analysis and machine learning, as well as with the learning

needs of novice programmers (Puri, 2024). Empirical insights from this study reveal a clear preference

among students for Python which is rated highly for its simplicity, readability, and industry applicability

(Islam et al., 2024). This divergence invites a reconsideration of legacy language preferences in curriculum

design. Prioritizing Python in introductory programming courses, can help educators create inclusive

learning environments, reduce common points of frustration for beginners, and better prepare students for

fast-evolving careers that demand adaptable thinking and advanced problem-solving skills (Y. Lin & Fang,

2023).

However, introducing a more accessible language alone is not sufficient without the supporting

infrastructure to ensure its effective delivery. The study’s findings on Facilitating Conditions (a construct

from the UTAUT2 model, that measures the degree to which a student believes that sufficient

organizational and technical infrastructure exists to support the adoption and effective use of a

programming language) revealed a lack of institutional readiness in this regard. In many educational

settings, particularly those constrained by limited resources, the availability of modern learning platforms,

updated software environments, and adequately trained instructors remains a major barrier to

programming language adoption (Ansari et al., 2024). This underscores the paradox that while curriculum

reform may be conceptually sound, its implementation weakens in the absence of systemic support. As

such, investments in digital infrastructure and professional development must be seen not as an auxiliary

aspect but as a foundational and meaningful curriculum transformation.

Another under-explored but powerful implication to emerge from the findings is the importance of

students’ voice or perspective in shaping curriculum decisions. Often sidelined in favor of academic or

administrative priorities, student perspectives offer valuable insight into lived educational experiences

and career aspirations. While students may not possess expertise in curriculum design, their feedback

reflects how learning translates into confidence, competence, and career readiness (Zhu et al., 2021).

Integrating student input alongside academic research and industry forecasts ensures that curriculum

development is grounded not only in theory and labor market analytics but also in the realities of classroom

engagement.

This dialogic approach becomes even more crucial when considering how programming skills connect

with future employment. The findings suggest that making current links between course content and career

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

153

relevance significantly enhances student motivation and persistence. When educators articulate how

fundamental concepts such as loops, functions, or data structures underpin real -world applications, such

as automation, app development, or AI, the programming education classroom transforms from an abstract

training ground into a launchpad for professional identity formation (Ho, 2024). Framing programming

education through the lens of relevance in industry is, therefore, not merely motivational but also stra tegic.

Perhaps the most forward-looking implication from this study concerns the role of Generative Artificial

Intelligence (GenAI) in reshaping programming pedagogy. As GenAI tools become increasingly

sophisticated and accessible, their potential to scaffold learning, reduce cognitive load, and offer

personalized guidance presents exciting opportunities for curriculum innovation (Prather et al., 2024).

Python’s compatibility with GenAI ecosystems, such as large language models, code generators, and

tutoring agents, further strengthens its suitability as the gateway programming language for novice

learners (Phung et al., 2023; Prather et al., 2025). The integration of GenAI, if done ethically and

pedagogically, can amplify both engagement and equity in programming education.

Considering these findings, curriculum designers in programming education should take targeted actions

to ensure relevance and effectiveness. This includes: adopting Python as the default introductory

programming language to enhance accessibility and alignment with industry needs; investing in the

institutional infrastructure and instructor training necessary to support such transitions; integrating student

feedback into curriculum development to reflect real learning experiences; linking programming conten t

to real-world applications and career pathways; and strategically integrating GenAI tools into teaching

practice to personalize and scaffold learning. By moving from a static, one -size-fits-all model to a

responsive, evidence-informed approach, programming education can become more inclusive, motivating,

and aligned with the demands of the modern workforce.

Limitations and Future Research Directions

While this study provides valuable insights, several limitations should be acknowledged. The sample was

drawn from a single institution, Modibbo Adama University, which may limit the generalizability of the

findings to other universities and educational systems. Additionally, the participant pool was

predominantly male (92%) and from Computer Science backgrounds (88%), potentially introducing

selection bias and reducing demographic representativeness. The cross-sectional nature of the study

captures student perceptions at a single point in time, without accounting for how these views evolve with

experience. Future research should adopt a multi-institutional approach, implement rigorous sampling

strategies, and include longitudinal studies to track programming language preferences across multiple

semesters. Targeted outreach to underrepresented groups, such as non-computing students and female

participants, would enhance inclusivity. Furthermore, as student perceptions may not always correlate

with actual programming proficiency, future studies should integrate performance-based metrics alongside

self-reported preferences to gain a more comprehensive understanding of programming language

effectiveness in education.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

154

Beyond these limitations, several promising avenues for future research exist. Investigating the role of

GenAI tools in reducing learning barriers is an emerging area of interest. Structured integration of Python,

Java, and C++ within programming curricula could also optimize skill development, ensuring students

receive balanced exposure to different paradigms. Comparative studies across academic disciplines, age

groups, and cultural contexts may provide further insights into variations in programming langu age

adoption and learning outcomes. Additionally, pedagogical innovations such as project -based learning,

peer collaboration and immersive learning environments should be explored for their potential to enhance

programming instruction. Addressing these areas will contribute to refining programming language

selection, improving teaching methodologies, and ultimately strengthening programming education in

HEIs.

Strategic Curriculum Design for Programming Education in Developing Countries

While programming education continues to evolve globally, higher education institutions (HEIs) in

developing countries face distinct challenges in aligning their curricula with both cognitive development

principles and rapidly shifting technological demands. This study sheds light on several instructional gaps

and pedagogical inefficiencies that limit the efficacy of programming instruction in these contexts. A

careful analysis of learner preferences, language complexity, and emerging technologies underscor es the

need for a structured reimagining of programming curricula.

A key observation from this study is the underutilization of beginner-friendly programming languages

during the foundational stages of instruction. Despite Python’s global reputation for simplicity, readability,

and industry relevance, it is often not prioritized in introductory courses across many HEIs (Balreira et

al., 2023). This discrepancy raises concerns about the cognitive burden placed on novice programmers,

many of whom struggle with syntactically dense languages. By introducing Python at the outse t,

institutions can significantly lower entry barriers, reduce student apprehension, and promote early

engagement with core programming constructs (Jiang et al., 2024; Murugesh et al., 2024). Its increasing

application across data science, AI, and web development further strengthens the argument for its early

curricular inclusion (Dhandayuthapani, 2024; Mehare et al., 2023).

In contrast, languages such as Java, though powerful and widely adopted, present a steeper learning curve

due to their verbosity and complexity. Yet, completely excluding Java from curricula would be

pedagogically shortsighted. Instead, this study advocates for a deliberate repositioning of Java to later

stages of instruction, such as in advance stages of object-oriented programming or software engineering

modules. This allows students to encounter Java at a point when their computational thinking has matur ed,

increasing their ability to grasp abstraction, inheritance, and modular design patterns without being

overwhelmed. Pedagogical sequencing, therefore, becomes a critical design principle in curriculum

restructuring.

Moreover, the strong preference expressed for C++ among learners in this study cannot be overlooked. As

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

155

a middle-level language, C++ provides unique affordances for developing deeper conceptual

understanding by bridging high-level programming with low-level memory and performance management

tasks (Heller et al., 2016). Integrating such languages into the curriculum can sharpen students’ problem-

solving abilities and better prepare them for specialized fields like systems programming and embedded

software development (Zhao, 2021).

The advent of GenAI presents both a challenge and an opportunity for programming pedagogy. Despite

its growing use in code generation and as an instructional feedback tool, the educational sector in many

developing countries has yet to explore its full potential. GenAI tools offer promising avenues for

adaptive, personalized, and interactive learning environments, features that can significantly enhance

student engagement and mastery when appropriately integrated (Zastudil et al., 2023). However, without

structured research into its pedagogical implications, integration may remain sporadic without any

strategy. Future inquiry must focus on frameworks for responsible GenAI adoption, balancing innovation

with instructional integrity.

All together, these insights offer a roadmap for transforming programming education in HEIs within

developing countries. A curriculum that is cognitively aligned, technologically relevant, and progressively

scaffolded will not only improve student outcomes but also prepare graduates to thrive in dynamic digital

economies. Moving forward, collaboration between curriculum designers, industry experts, and

educational technologists will be essential in bringing these recommendations to life.

Ethical Considerations

This study adhered to strict ethical guidelines and complied with the Nigeria Data Protection Act (NDPA)

(Federal Government of Nigeria, 2023), to ensure participant privacy and data security. Participation was

entirely voluntary, with informed consent obtained from all respondents before data collection. In

accordance with lawful processing principles, no personal identifiable information was collected, and all

responses were fully anonymized to protect participant identities. To maintain data security, re sponses

were collected using Google Forms, ensuring no email addresses were recorded. Data access was restricted

to authorized researchers, and stored responses were protected within Google’s encrypted cloud

infrastructure. However, in line with storage limitation requirements, the data will be retained only for the

duration necessary for research purposes and permanently deleted thereafter. To further enhance security,

exported anonymized responses are stored in a password-protected local storage before final deletion from

Google’s cloud.

Special care was taken to ensure that demographic data did not compromise participant anonymity.

Additionally, all academic performance-related responses were analyzed in aggregate to prevent

individual identification. These measures align with international ethical standards in educational

research, ensuring transparency, confidentiality, and participant trust while adhering to Nigeria’s data

protection regulations.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

156

Conclusion

This study highlights the growing capacity, availability and influence of Python as the preferred language

for beginner-level programming education in Nigerian higher education institutions. Its perceived ease of

learning, usefulness, and relevance to industry make it an ideal choice for introductory programming

courses, while Java remains valuable as a strategically integrated programming language in curricula for

later or advance stages of programming education. This will provide students with a well -rounded

programming foundation. Furthermore, as programming education evolves, institutions should consider

adopting hybrid approaches that balance pedagogical effectiveness with industry demands, strategically

incorporating both Python and Java.

Additionally, exploring the role of GenAI in programming instruction presents an opportunity to

revolutionize how students can learn and be taught how to code. GenAI can improve programming

education by making it more personalized, accessible, and engaging while also developing student’s

higher-order thinking skills (Becker et al., 2023). GenAI serves as a cognitive scaffold, providing real -

time feedback, examples, and explanations. By adapting to each student’s learning pace and needs, it

tailors their educational experience, ensuring that students can progress at their own speed while receiving

the support they need to master complex programming concepts. This personalized approach not only aids

in immediate learning but also encourages critical thinking and problem-solving, essential components of

higher-order thinking.

By aligning curricula with both student preferences and technological trends, educational institutions can

create future-ready programming education that not only meets industry standards but also builds an

engaging and effective learning experience for learners. Future research could further investigate the role

of emerging technologies like GenAI in shaping programming pedagogy and student engagement, ensuring

that programming instruction remains adaptive to the evolving needs of both learners and the ind ustry.

Statements and Declarations

Acknowledgements: The authors would like to thank the students who participated in the survey, and the

computer science departments at Modibbo Adama University for their approval and support to conduct the data

collection.

Availability of Data and Materials: The datasets collected and analyzed during the current study are not publicly

available due to privacy and ethical considerations but are available from the corresponding author on reasonable

request.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-

profit sectors.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

157

References

Abbas, S., Latif, S., & Khoso, F. J. (2023). Relationship between Students’ Cognitive Abilities and Cumulative

Grade Point Average at University Level. Global Educational Studies Review, VIII(I), 438–444.

https://doi.org/10.31703/gesr.2023(VIII-I).38

Ansari, M., Waris, S., & Zara, C. (2024). Barriers to Educational Technology Adoption: Navigating Challenges

in Integration. Qlantic Journal of Social Sciences, 5(3), 240–247.

https://doi.org/10.55737/qjss.123732538

Asgari, M., Tsai, F.-C., Mannila, L., Strömbäck, F., & Sadique, K. M. (2024). Students’ perspectives on using

digital tools in programming courses: A cross country case study between Sweden and Taiwan. Discover

Education, 3(1), 57. https://doi.org/10.1007/s44217-024-00144-4

Balreira, D. G., Silveira, T. L. T. D., & Wickboldt, J. A. (2023). Investigating the impact of adopting Python and

C languages for introductory engineering programming courses. Computer Applications in Engineering

Education, 31(1), 47–62. https://doi.org/10.1002/cae.22570

Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., & Santos, E. A. (2023). Programming

Is Hard - Or at Least It Used to Be: Educational Opportunities and Challenges of AI Code Generation.

Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, 500–506.

https://doi.org/10.1145/3545945.3569759

Birillo, A., Tigina, M., Kurbatova, Z., Potriasaeva, A., Vlasov, I., Ovchinnikov, V., & Gerasimov, I. (2024).

Bridging Education and Development: IDEs as Interactive Learning Platforms. Proceedings of the 1st

ACM/IEEE Workshop on Integrated Development Environments, 53–58.

https://doi.org/10.1145/3643796.3648454

BusinessDay. (2024). Only 22% of STEM graduates are females in nigeria – FITC.

https://businessday.ng/news/article/only-22-of-stem-graduates-are-females-in-nigeria-fitc/

Chakraborty, P., Shahriyar, R., Iqbal, A., & Uddin, G. (2021). How do developers discuss and support new

programming languages in technical Q&A site? An empirical study of Go, Swift, and Rust in Stack

Overflow. Information and Software Technology, 137, 106603.

https://doi.org/10.1016/j.infsof.2021.106603

Dela Rosa, A. P. (2023). Effectiveness of an Online Course in Programming in a State University in the

Philippines. International Journal of Computing Sciences Research, 7, 1685–1698.

https://doi.org/10.25147/ijcsr.2017.001.1.127

Demir, F. (2022). The effect of different usage of the educational programming language in programming

education on the programming anxiety and achievement. Education and Information Technologies,

27(3), 4171–4194. https://doi.org/10.1007/s10639-021-10750-6

Dhandayuthapani, B. V. (2024). Enhancing Jakarta Faces Web App with AI Data-Driven Python Data Analysis

and Visualization. International Journal of Information Technology and Computer Science, 16(5), 36–

51. https://doi.org/10.5815/ijitcs.2024.05.03

Dobslaw, F., Angelin, K., Öberg, L.-M., & Ahmad, A. (2023). The Gap between Higher Education and the

Software Industry—A Case Study on Technology Differences (Version 1). arXiv.

https://doi.org/10.48550/ARXIV.2303.15597

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

158

Eccles, J. S., & Wigfield, A. (2023). Expectancy-value theory to situated expectancy-value theory: Reflections on

the legacy of 40+ years of working together. Motivation Science, 9(1), 1–12.

https://doi.org/10.1037/mot0000275

Edeh, M., Ugboaja, S., Ugwuja, N., Igwe, J., Daniel, I., & Richard-Nnabu, N. (2022). Smartphone usage among

computer science students in higher education during covid-19 lockdown. Journal of Computer Science

and Its Application, 20–26.

Enudi, O. L., & Umoeshiet E. Akpan. (2023). Availability And Utilization Of Instructional Resources On

Academic Performance Of Business Education Students In Tertiary Institutions In Delta State.

https://doi.org/10.5281/ZENODO.10208554

Eteng, I., Akpotuzor, S., Akinola, S. O., & Agbonlahor, I. (2022). A review on effective approach to teaching

computer programming to undergraduates in developing countries. Scientific African, 16, e01240.

https://doi.org/10.1016/j.sciaf.2022.e01240

Federal Government of Nigeria. (2023). Nigeria data protection act (NDPA), 2023.

https://cert.gov.ng/ngcert/resources/Nigeria_Data_Protection_Act_2023.pdf

Fulton, K. R., Chan, A., Votipka, D., Hicks, M., & Mazurek, M. L. (2021). Benefits and drawbacks of adopting a

secure programming language: Rust as a case study. Seventeenth Symposium on Usable Privacy and

Security (SOUPS 2021), 597–616. https://www.usenix.org/conference/soups2021/presentation/fulton

Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language

and education research: Guidelines using an applied example. Research Methods in Applied Linguistics,

1(3), 100027. https://doi.org/10.1016/j.rmal.2022.100027

Haroud, S., & Saqri, N. (2025). Generative AI in Higher Education: Teachers’ and Students’ Perspectives on

Support, Replacement, and Digital Literacy. Education Sciences, 15(4), 396.

https://doi.org/10.3390/educsci15040396

Heller, T., Kaiser, H., Diehl, P., Fey, D., & Schweitzer, M. A. (2016). Closing the Performance Gap with Modern

C++. In M. Taufer, B. Mohr, & J. M. Kunkel (Eds.), High Performance Computing (Vol. 9945, pp. 18–

31). Springer International Publishing. https://doi.org/10.1007/978-3-319-46079-6_2

Ho, A. (2024). Linking Scholarly Learning Activities and Professional Identity in OTD Students [University of

Nevada, Las Vegas]. https://doi.org/10.34917/37650832

Iftikhar, S., Guerrero-Roldán, A.-E., & Mor, E. (2022). Practice Promotes Learning: Analyzing Students’

Acceptance of a Learning-by-Doing Online Programming Learning Tool. Applied Sciences, 12(24),

12613. https://doi.org/10.3390/app122412613

Ishaq, K., & Alvi, A. (2023). Personalization, Cognition, and Gamification-based Programming Language

Learning: A State-of-the-Art Systematic Literature Review (Version 1). arXiv.

https://doi.org/10.48550/ARXIV.2309.12362

Islam, M. T., Islam, M. R., Jhilik, R. A., Islam, M. A., Raihan, P. M. S., Faruque, M. S., & Shahjahan, A. M.

(2024). A Comparative Analysis of Programming Language Preferences Among Computer Science and

Non-Computer Science Students. European Journal of Theoretical and Applied Sciences, 2(3), 900–912.

https://doi.org/10.59324/ejtas.2024.2(3).70

Jain, M. P., Soni, H., Singh, A. P., Mehta, P., & Babani, N. (2024). Comparative review of python and C: Choosing

the right language for beginners.

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

159

Jiang, Y., Wu, H., Yu, X., & Ji, T. (2024). A study of factors influencing programming anxiety among non-

computer students. Proceedings of the 2024 9th International Conference on Information and Education

Innovations, 63–69. https://doi.org/10.1145/3664934.3664956

Joshi, A., & Tiwari, H. (2023). An Overview of Python Libraries for Data Science. Journal of Engineering

Technology and Applied Physics, 5(2), 85–90. https://doi.org/10.33093/jetap.2023.5.2.10

Keuning, H., Alpizar-Chacon, I., Lykourentzou, I., Beehler, L., Köppe, C., De Jong, I., & Sosnovsky, S. (2024).

Students’ Perceptions and Use of Generative AI Tools for Programming Across Different Computing

Courses. Proceedings of the 24th Koli Calling International Conference on Computing Education

Research, 1–12. https://doi.org/10.1145/3699538.3699546

Kruglyk, V., Dovhopiatyi, A., Tesliuk, N., & Strykhar, A. (2012). Selecting programming language for teaching

students in technical universities. In A. Petrenko, H. C. Mayr, & D. A. Pospelov (Eds.), Proceedings of

the 8th international conference on ICT in education, research and industrial applications (ICTERI

2012) (Vol. 848, pp. 188–198). CEUR-WS.org. http://ceur-ws.org/Vol-848/ICTERI-2012-CEUR-WS-

paper-37-p-188-198.pdf

Lin, J. (2022). The effects of gamification instruction on the roles of perceived ease of learning, enjoyment, and

useful knowledge toward learning attitude. Turkish Online Journal of Educational Technology-TOJET,

21(2), 81–91.

Lin, Y., & Fang, L. (2023). Exploring Innovations in Teaching Reform for Python Programming Under

Engineering Education Accreditation: Proceedings of the 2nd International Seminar on Artificial

Intelligence, Networking and Information Technology, 355–361.

https://doi.org/10.5220/0012283900003807

Ling, H.-C., Hsiao, K.-L., & Hsu, W.-C. (2021). Can Students’ Computer Programming Learning Motivation and

Effectiveness Be Enhanced by Learning Python Language? A Multi-Group Analysis. Frontiers in

Psychology, 11, 600814. https://doi.org/10.3389/fpsyg.2020.600814

Mahalaxmi, G., Donald, A. D., & Srinivas, T. A. S. (2023). A Short Review of Python Libraries and Data Science

Tools. South Asian Research Journal of Engineering and Technology, 5(1), 1–5.

https://doi.org/10.36346/sarjet.2023.v05i01.001

Mason, R., Simon, Becker, B. A., Crick, T., & Davenport, J. H. (2024). A Global Survey of Introductory

Programming Courses. Proceedings of the 55th ACM Technical Symposium on Computer Science

Education V. 1, 799–805. https://doi.org/10.1145/3626252.3630761

Mehare, H. B., Anilkumar, J. P., & Usmani, N. A. (2023). The Python Programming Language. In M. ‘Sufian’

Badar (Ed.), A Guide to Applied Machine Learning for Biologists (pp. 27–60). Springer International

Publishing. https://doi.org/10.1007/978-3-031-22206-1_2

Murugesh, T. S., Vasudevan, S. K., & Pulari, S. R. (2024). Python: A Practical Learning Approach (1st ed.). CRC

Press. https://doi.org/10.1201/9781032712673

Nguyen, A., Hong, Y., Dang, B., & Huang, X. (2024). Human-AI collaboration patterns in AI-assisted academic

writing. Studies in Higher Education, 49(5), 847–864. https://doi.org/10.1080/03075079.2024.2323593

Panchbudhe, S., Shaikh, S., Swami, H., Kadam, C. Y., Padalkar, R., Shivkar, R. R., Gulavani, G., Gulajkar, S.,

Gawade, S., & Mujawar, F. (2024). Efficacy of Google Form–based MCQ tests for formative assessment

in medical biochemistry education. Journal of Education and Health Promotion, 13(1).

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

160

https://doi.org/10.4103/jehp.jehp_981_23

Parveen, K., Phuc, T. Q. B., Alghamdi, A. A., Hajjej, F., Obidallah, W. J., Alduraywish, Y. A., & Shafiq, M.

(2024). Unraveling the dynamics of ChatGPT adoption and utilization through Structural Equation

Modeling. Scientific Reports, 14(1), 23469. https://doi.org/10.1038/s41598-024-74406-4

Penney, E. K., Agyei, J., Boadi, E. K., Abrokwah, E., & Ofori-Boafo, R. (2021). Understanding Factors That

Influence Consumer Intention to Use Mobile Money Services: An Application of UTAUT2 With

Perceived Risk and Trust. Sage Open, 11(3), 21582440211023188.

https://doi.org/10.1177/21582440211023188

Perera, P., Tennakoon, G., Ahangama, S., Panditharathna, R., & Chathuranga, B. (2021). A Systematic Mapping

of Introductory Programming Languages for Novice Learners. IEEE Access, 9, 88121–88136.

https://doi.org/10.1109/ACCESS.2021.3089560

Phung, T., Pădurean, V.-A., Cambronero, J., Gulwani, S., Kohn, T., Majumdar, R., Singla, A., & Soares, G.

(2023). Generative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human Tutors.

Proceedings of the 2023 ACM Conference on International Computing Education Research - Volume 2,

41–42. https://doi.org/10.1145/3568812.3603476

Prather, J., Leinonen, J., Kiesler, N., Gorson Benario, J., Lau, S., MacNeil, S., Norouzi, N., Opel, S., Pettit, V.,

Porter, L., Reeves, B. N., Savelka, J., Smith, D. H., Strickroth, S., & Zingaro, D. (2025). Beyond the

Hype: A Comprehensive Review of Current Trends in Generative AI Research, Teaching Practices, and

Tools. 2024 Working Group Reports on Innovation and Technology in Computer Science Education,

300–338. https://doi.org/10.1145/3689187.3709614

Prather, J., Reeves, B. N., Leinonen, J., MacNeil, S., Randrianasolo, A. S., Becker, B. A., Kimmel, B., Wright, J.,

& Briggs, B. (2024). The Widening Gap: The Benefits and Harms of Generative AI for Novice

Programmers. Proceedings of the 2024 ACM Conference on International Computing Education

Research - Volume 1, 469–486. https://doi.org/10.1145/3632620.3671116

Puri, A. (2024). Skills Mismatch in Entry-level Programmer Positions: Employer Expectations vs. Observations

in Lalitpur, Nepal. Journal of Education and Research, 14(1), 1–135.

https://doi.org/10.51474/jer.v14i1.733

Quintero-Manes, R., & Vieira, C. (2024). Differentiated measurement of cognitive loads in computer

programming. Journal of Computing in Higher Education. https://doi.org/10.1007/s12528-024-09411-7

Ringle, C. M., Wende, S., & Becker, J.-M. (2024). SmartPLS 4 [Manual]. SmartPLS GmbH.

Romao, L., Kalinowski, M., Barbosa, C., Araújo, A. A., Barbosa, S. D. J., & Lopes, H. (2024). Agile Minds,

Innovative Solutions, and Industry-Academia Collaboration: Lean R&D Meets Problem-Based

Learning in Software Engineering Education (Version 1). arXiv.

https://doi.org/10.48550/ARXIV.2407.15982

Rudhumbu, N. (2022). Applying the UTAUT2 to predict the acceptance of blended learning by university

students. Asian Association of Open Universities Journal, 17(1), 15–36. https://doi.org/10.1108/AAOUJ-

08-2021-0084

Sandoval-Medina, C., Arevalo-Mercado, C., Munoz-Andrade, E., & Munoz-Arteaga, J. (2024). Self-Explanation

Effect of Cognitive Load Theory in Teaching Basic Programming. Journal of Information Systems

Education, 35(3), 303–312. https://doi.org/10.62273/GMIV1698

International Journal of Technology in Education and Science 10 (2026) 133-161 A. A. Kadams & S. S. Oyelere

161

Schoeffel, P., Ramos, V. F. C., Cechinel, C., & Wazlawick, R. S. (2021). The Expectancy-Value-Cost Light Scale

to Measure Motivation of Students in Computing Courses. Informatics in Education.

https://doi.org/10.15388/infedu.2022.04

Shahzad, M. F., Xu, S., Khan, K. I., & Hasnain, M. F. (2023). Effect of social influence, environmental awareness,

and safety affordance on actual use of 5G technologies among Chinese students. Scientific Reports, 13(1),

22442. https://doi.org/10.1038/s41598-023-50078-4

Siegfried, R. M., Herbert-Berger, K. G., Leune, K., & Siegfried, J. P. (2021). Trends Of Commonly Used

Programming Languages in CS1 And CS2 Learning. 2021 16th International Conference on Computer

Science & Education (ICCSE), 407–412. https://doi.org/10.1109/ICCSE51940.2021.9569444

Singh, D., & Rajendran, R. (2024). Cognitive engagement as a predictor of learning gain in Python programming.

Smart Learning Environments, 11(1), 58. https://doi.org/10.1186/s40561-024-00330-9

Sobral, S. R. (2021). The Old Question: Which Programming Language Should We Choose to Teach to Program?

In T. Antipova (Ed.), Advances in Digital Science (Vol. 1352, pp. 351–364). Springer International

Publishing. https://doi.org/10.1007/978-3-030-71782-7_31

Sosale, S., Harrison, G. M., Tognatta, N., & Nakata, S. (2023). Engendering access to STEM education and

careers in south asia. World Bank Publications.

Tey, T. C. Y., & Moses, P. (2018). UTAUT: Integrating Achievement Goals and Learning Styles for

Undergraduates’ Behavioural Intention to Use Technology. EAI Endorsed Transactions on E-Learning,

5(17), 155573. https://doi.org/10.4108/eai.25-9-2018.155573

Venkatesh, Thong, & Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the

Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157.

https://doi.org/10.2307/41410412

White, A. (2015). Students’ Familiarity With Google Applications for Education at a Thai University. SSRN

Electronic Journal. https://doi.org/10.2139/ssrn.3311329

Zastudil, C., Rogalska, M., Kapp, C., Vaughn, J., & MacNeil, S. (2023). Generative AI in Computing Education:

Perspectives of Students and Instructors. 2023 IEEE Frontiers in Education Conference (FIE), 1–9.

https://doi.org/10.1109/FIE58773.2023.10343467

Zhao, Y. (2021). Research on Application of Computer Recognition Technology in C Language Programming

Modeling System. Journal of Physics: Conference Series, 2083(4), 042024.

https://doi.org/10.1088/1742-6596/2083/4/042024

Zhu, G., Raman, P., Xing, W., & Slotta, J. (2021). Curriculum design for social, cognitive and emotional

engagement in Knowledge Building. International Journal of Educational Technology in Higher

Education, 18(1), 37. https://doi.org/10.1186/s41239-021-00276-9

