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 Important prerequisites for effective teaching in science, technology, engineering, 

and mathematics (STEM) are outlined in the refined consensus model of 

pedagogical content knowledge: Teachers need to become able to apply their 

pedagogical content knowledge in practice, called enacted pedagogical content 

knowledge. To support pre-service STEM teachers to develop enacted 

pedagogical content knowledge, scholars in STEM fields need to implement 

opportunities of lesson planning, teaching, and reflecting upon teaching, and 

provide assessments and guidance for professional development. This theoretical 

article reviews advances in artificial intelligence-based methods in reference to 

applications of these methods in pre-service STEM teacher education with a focus 

on the refined consensus model for pedagogical content knowledge. A number of 

selected studies provides valuable insights into opportunities and challenges of 

applying AI in STEM teacher education. We found that AI technologies, based on 

their differing degrees of sophistication, provide different affordances with regards 

to research and professional development. AI technologies already prevail STEM 

teacher education and STEM learning more generally. To enhance STEM teacher 

education with AI technologies, affordances of the technologies with reference to 

potentials for automation and feedback have to be recognized. The refined 

consensus model provides a valuable lens to conceptualize these affordances. 
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Introduction 

 

Teachers in science, technology, engineering, and mathematics (STEM) fields need well-structured and applicable 

professional knowledge to design lessons and enact effective teaching (Abell, 2007; Baumert & Kunter, 2011; 

Magnusson et al., 1999; Sadler et al., 2013). The structure and developmental mechanisms for this professional 

knowledge, the pedagogical content knowledge in particular, are synthesized in the refined consensus model 

(RCM) of pedagogical content knowledge (PCK). Well-structured PCK and enacting lesson planning, teaching, 

and reflecting upon are prerequisites to develop enacted PCK that enables the pre-service teachers in STEM fields 

(PSTs) to professionally act later on in their profession (Gess-Newsome, 2015; Gess-Newsome et al., 2017). 

STEM teacher education is therefore organized in such a way that PSTs develop their professional knowledge in 

a university phase and are then required to engage in increasingly complex and authentic teaching enactments in 

school contexts (Clarke & Hollingsworth, 2002; Grossman et al., 2009; Zeichner, 2010). To allow PSTs to 
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continuously improve their teaching, it is important that they develop a contextualized and applicable PCK 

('enacted') and apply it in practice (Alonzo et al., 2019). Furthermore, PSTs need to develop the ability to reflect 

upon their teaching experiences and ground their professional growth in evidence of student learning outcomes 

(Clarke & Hollingsworth, 2002; Korthagen, 1999; Korthagen & Kessels, 1999). However, either developing 

contextualized and applicable PCK, as well as the capability to reflect upon one's teaching experiences is difficult 

for PSTs and guidance, e.g., through feedback, is an important factor to promote professional growth (Carlson et 

al., 2019; Mena-Marcos et al., 2013). Therefore, it is important to provide (technology-)rich learning opportunities 

for PSTs to apply PCK and reflect upon it alongside with individualized feedback (Hattie & Timperley, 2007; 

Kluger & DeNisi, 1996; Lai & Calandra, 2010; Schön, 1983). 

 

Facilitating PSTs to develop the required professional skills requires substantial and substantive resources from 

instructors and researchers (Zhai, Haudek, Shi, et al., 2020). For example, developing professional skills and 

knowledge is expected to be most effective when timely feedback is provided for teaching enactments, however, 

this is demanding for instructors, and not often done (effectively) in practice (Clarke & Hollingsworth, 2002; 

Hattie & Timperley, 2007; Lai & Calandra, 2010). Moreover, assessing PCK and practices such as lesson planning 

and reflection reports, as well as providing adaptive and individualized feedback, is conceptually and practically 

challenging, given that teachers produce large amounts of planning and reflection documents throughout their 

training, and these documents entail threads and discourses that both longitudinally and concurrently relate to 

each other. As such, an amount of complexity is created that easily escapes the capacity and capabilities of 

instructors who operate under various constraints such as limited time. 

 

Technologies, in particular artificial Intelligence (AI)-enhanced technologies, can play an important role in 

providing teachers, instructors and researchers in STEM teacher education contexts evidence-centered means for 

assessment and individualized feedback. AI-based methods have proven to be valuable resources for educational 

research (Nelson et al., 2021; Salas-Pilco et al., 2022). In addition, AI-based methods have also been shown to be 

valuable tools to assess professional competencies (M. Liu et al., 2019; Ullmann, 2019; Zhai, Yin, et al., 2020). 

Recently advanced generative AI (GenAI) tools even extended the capabilities for assessment and feedback 

(Kasneci et al., 2023). This theoretical study seeks to answer the following research question in the context of the 

RCM as our guiding framework: In what domains and in what ways have (Gen)AI methods be utilized in teacher 

education in STEM fields, and what potentials and challenges can be derived from these applications. 

 

Professional Competencies in Science Teacher Education 

 

The teaching profession is characterized by the necessity for teachers to act and decide under uncertainty (Aeppli 

& Lötscher, 2016). To ground their decisions, teachers rely on their attitudes, beliefs, and professional knowledge, 

which is commonly differentiated into content knowledge, pedagogical knowledge, as well as PCK as the 

``amalgam'' between domain-specific knowledge and pedagogical insights (Shulman, 1986), or an ``amalgam of 

instructional strategies, content representations and content knowledge'' (Kind & Chan, 2019, p. 968). Arguably, 

the structure and development of PCK can be seen as a particular provenance of discipline-based educational 

research in STEM fields as outlined in the RCM (Carlson et al., 2019). PCK, it has been shown, develops both in 
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quantity and structure during PST education (Baumert et al., 2010; Krauss et al., 2008; Sorge, Kröger, et al., 2019; 

Sorge, Stender, & Neumann, 2019). For primary PSTs it has been shown that PCK is linked to professional 

perception of situations (Meschede et al., 2017). (Enacted) PCK eventually develops through continuous lesson 

planning, teaching, and reflection (Carlson et al., 2019; Mientus et al., 2022). Planning, teaching, and reflection 

hinge on personal PCK (reflection is unproductive if it solely relies on personal experience, as argued in Williams 

and Grudnoff (2011)), where reflection can be defined as a structured thinking process in which individual 

dispositions (e.g., the PCK) are related to situation-specific affordances and circumstances with the goal to 

advance one's competencies and teaching (von Aufschnaiter et al., 2019).  

 

The RCM synthesizes these findings into an overarching framework that integrates prior models for PCK in 

science education (Carlson et al., 2019). While the RCM was developed in the context of science education, 

similar conceptualizations exist for professional knowledge (integration of different knowledge facets, collective 

versus personal knowledge, ...), and the importance of attitudes and beliefs also in mathematics, engineering, and 

technology education (Krauss et al., 2008; Love & Hughes, 2022; Mishra & Koehler, 2006; Neuweg, 2014; Tatto 

et al., 2008). The RCM posits three realms of PCK, collective, personal, and enacted PCK (see simplified version 

of the RCM depicted in Figure 1). Collective PCK can be understood as the agreed upon knowledge in the 

community of practicing scholars in STEM fields (e.g., students misconceptions or learning difficulties). Personal 

PCK is the individual knowledge that teachers in STEM fields might have and that they utilize for lesson planning 

and reflection. Moreover, their attitudes and beliefs significantly impact planning and reflections, as well as 

enacting (enacted PCK) lessons. We will use the RCM in the following as the guiding framework for effective 

professional development programs in STEM education. Several domains of the RCM will be differentiated: 

assessing the realms of knowledge (collective, personal, and enacted PCK), and enhancing professional 

development of teachers in STEM fields. 

 

 

Figure 1. Simplified Version of the RCM as Derived in Carlson et al. (2019). The Identified Domains Are 

Depicted as Boxes 
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Prevailing Challenges in STEM Teacher Education 

 

PCK (as operationalized in the RCM) structures professional development programs, and it has been empirically 

shown that professional development interventions and programs can foster development of PCK, attitudes, and 

beliefs of PSTs (Gess-Newsome et al., 2017; Sorge, Kröger, et al., 2019). However, the exact mechanisms are not 

well understood, given that either collective PCK and enacted PCK are multifaceted, complex constructs, which 

depend on, among others, context, topic, and grade-level. For example, PCK entails multiple, highly-interrelated 

dimensions such as knowledge of student understanding and knowledge of instructional strategies and 

representations (Carlson et al., 2019; Park & Oliver, 2008). Yet, neither student understanding, nor the concept of 

representation are unambiguous concepts. For example, students' understandings in domains such as evolution, 

mechanics, or thermodynamics are quite different from one other. Models of conceptual development and 

conceptual change explain facets of student understanding (diSessa, 2018), but there is arguably no monolithic 

knowledge of student understanding. Consequently, it is challenging to assess such dimensions of PCK, given 

that knowledge of student understanding can manifest in questioning strategies in science lessons, or in designing 

tasks in specific ways. Valid assessment of PCK might therefore entail multiple sources of evidence of classroom 

interactions, as well as constructed responses to questionnaires or vignette assessments (Zhai, Yin, et al., 2020). 

Educational researchers argued for the inception of performance assessments (Kulgemeyer & Riese, 2018). In 

such assessments, multiple sources of evidence have to be integrated in much more involved ways compared to 

simple closed-form questionnaires. For example, language utterances (which are complex and multi-faceted) can 

be utilized as sources of evidence for PCK (as in the PCK maps approach, see Park and Chen (2012)). 

 

Besides improved forms of assessment, pre-service teachers in STEM fields need to receive feedback for their 

task-performance and teaching enactments that should be continuous, adaptive, and timely (Clarke & 

Hollingsworth, 2002; Hattie & Timperley, 2007). Moreover, feedback should be grounded in established theory. 

For example, reflections are oftentimes scaffolded with reflection-supporting models (Kost, 2019; Lai & Calandra, 

2010; A. Nowak et al., 2019). Reflection is typically initiated by an unexpected event or a problem (Dewey, 1933; 

Rodgers, 2002). This event or problem is to be described in a way that is as objective as possible. Also, 

circumstantial factors (e.g., the learning objectives, grade level, etc.) have to be outlined. Afterwards, reasons for 

this event occurring have to be singled out (e.g., particular question of a student that might hint at difficulties of 

understanding the subject matter). Finally, alternative modes of action, as well as consequences for personal 

professional development, must be outlined (Korthagen, 1999; Korthagen & Kessels, 1999). There are several 

well-known issues that PSTs face when reflecting upon their teaching enactments. For example, particular 

problematic situations might not be recognized, or students reflect their teaching enactments in a rather evaluative 

mode, as compared to a more objective way (Korthagen & Kessels, 1999). Assessing verbal reports of reflections 

is daunting and requires empirically grounded means of analysis. Providing feedback and guidance for such 

learning products is even more challenging, given that this takes up substantial resources.  

 

With the recent progress in computer-based assessment and AI, novel opportunities appear for research and 

support of professional competencies such as PSTs' PCK and reflections. For example, AI-based technologies 

were found to be capable of analysis of complex data sets, automated assessment, and individualized feedback, 
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which offer novel potentials for PST education (Xu & Ouyang, 2022). At the same time, these technologies are 

riddled with challenges such as lack of transparency, unreliable information extraction, and bias. These challenges 

are severe for high-stakes testing environments, as encountered in educational institutions (Krist et al., 2025). 

 

Artificial Intelligence, Machine Learning, and Natural Language Processing 

 

The study of AI originated in the mid-20th century and its workhorse method was termed machine learning (ML) 

(T. Mitchell, 1997; Samuel, 1959). ML, as a statistical learning approach, enables computers to learn patterns and 

relationships from data and enables them to generate reasonable output. Early applications of ML included 

learning weights in an artificial neural networks, the (multi-layer) perceptron, to classify data (ROSENBLATT, 

1958). Later on, ML algorithms were used for computerized language processing, namely natural language 

processing (NLP). Early approaches included retrieval of information from text with ML algorithms by 

transforming text into vectors and calculating similarity (Deerwester et al., 1990). Two widely used ML learning 

approaches are supervised and unsupervised learning (Zhai, Haudek, Shi, et al., 2020; Zhai, Yin, et al., 2020). In 

the former, the labels are provided along with some examples. The latter is characterized only by examples without 

labels.  

 

An intricate problem remained with capturing natural language with computers. Natural language is quite complex 

to analyze, even rather simple constructed response items comprise large outcome spaces (Meurers, 2012). For 

example, a typical learner can choose from tremendous resources to generate a response: S/he can choose from a 

vocabulary (mental lexicon) that might comprise some thousand words to produce language as well as mental 

rules (M. A. Nowak et al., 2001), that constrain allowed sentences to be produced. Such situations are 

characterized by combinatorial explosion, or ``curse of dimensionality'' (Bishop, 2006). A consequence of this 

large outcome space is the sparsity with which any combination of features in the data set is present in the outcome 

space. In ML research this relates to the problem of generalization. While it has been verified that i.i.d. 

(independently, identically distributed) generalization is feasible for deep learning models, it is often unclear what 

true generalization means in different contexts (Note that in high-dimensional (>100 dimensions) data sets, any 

problem amounts to be extrapolation rather than interpolation, see Balestriero et al. (2023)). However, the surprise 

for researchers in ML and AI was that either the ``curse of dimensionality” and related problems of high-

dimensional optimization are no real challenges but rather affordances for deep learning (Sejnowski, 2024). 

 

Regularities in language help capture the complexity (M. A. Nowak et al., 2001). For example, science language 

is organized around core concepts such as energy, or system, and exhibits regularities that suggest natural language 

to be a complex system (Wulff, 2023). Complex systems are comprised of parts, e.g., individual words, that form 

a whole, e.g., a text. It was then shown that words in language exhibit certain distributional properties: the 

frequency of words scales with the rank according to a power law distributions, and shorter words occur more 

often compared to longer words, which can be explained by information-theoretic principles such as least-effort 

(Zanette, 2014). These are patterns that are extraordinarily difficult for human researchers to see. Yet, AI-based 

tools were also found to excel at language analysis. One particular NLP application that was found to excel at 

language-related tasks were language models, which seek to predict a token based on a sequence of text (Goldberg, 
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2017). Language models became largely possible with advances in deep learning, i.e., the training of artificial 

neural networks with many layers and millions of parameters. In particular, mapping discrete symbols (such as 

tokens or words) to continuous, lower-dimensional vectors (called embeddings) became a facilitator of 

performance improvements in many NLP tasks (Goldberg, 2017). Later, large language models (LLMs) improved 

upon language models, mainly by novel architectures. In particular, an attention mechanism in the transformer 

language model architecture was a major improvement over existing architectures (Vaswani et al., 2017). After 

training these models on vast corpora of data, transformer-based LLMs are capable to attend to important words 

in a sequence and, in an auto-regressive manner, generate probable next tokens. Several parameters can be 

adjusted by the user to accommodate for the degree of determinism with which the tokens are chosen from the 

probability distribution.  

 

In sum, (generative) AI tools such as ML algorithms or LLMs can leverage novel potentials for STEM education 

research and instruction such as assessment and feedback for different domains in the RCM such as collected or 

enacted PCK. Yet, as exciting as the potentials may be, ML algorithms are inherently statistical by nature, and 

thus model validation is an intricate and complex problem. We will now review applications of ML and LLMs in 

pre-service STEM teacher education and reflect upon potentials and challenges given the details outlined in the 

reviewed studies. 

 

Applications of ML in (STEM) Teacher Education 

 

Supervised and unsupervised ML have been employed in STEM education research. An early application of ML 

was presented by Wang et al. (2008), who combined ML and NLP to evaluate problem solving performance earth 

science education. They manually classified open-ended responses and found that ML algorithms could predict 

category membership approximately equally well as human raters could (Bleckmann & Friege, 2023; Donnelly 

et al., 2015; Krüger & Krell, 2020; H.-S. Lee et al., 2019; Linn et al., 2014; O. L. Liu et al., 2014; Mao et al., 

2018; Nehm et al., 2012; Sherin, 2013; Wulff et al., 2021; Zhai et al., 2022; Zhu et al., 2017). ML and NLP have 

then been used in in-service and pre-service (STEM) teacher education (Salas-Pilco et al., 2022). Mostly 

supervised ML learning techniques were used to classify teachers' responses in specific task environments (Xu & 

Ouyang, 2022; Zhai, Haudek, Shi, et al., 2020). For example, Wahlen et al. (2020) use a supervised ML approach 

to automatically classify the PCK of economy teachers. They found that a good human-machine agreement was 

achievable. Zhai, Haudek, Stuhlsatz, and Wilson (2020) utilized supervised ML to score in-service science 

teachers' PCK-based constructed responses to video-clips of elementary science lessons. They found that the ML 

algorithms could approximate the human scoring. Moreover, the ML algorithms were more consistent in scoring 

different scenarios compared to the human raters. These findings resonate with other studies that applied ML 

methods, showing that simple classification and scoring problems can be imitated by machines (Wang et al., 

2008). What becomes apparent in this study is that a substantial amount of manual coding is required, as well as 

technical expertise to train the ML algorithms. These then are only valid for the specific scenarios, and it is not 

clear if they are also valid for PST responses. In reference to the RCM, traditional ML offer the possibility to 

reliably assess personal PCK even with constructed-responses. Constructed response items have been argued to 

be more appropriate for validly assessing complex constructs (Nehm et al., 2012; von Aufschnaiter et al., 2019). 
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As such, ML provides a path toward implementing performance assessment at scale (note that automatic 

transcription of recorded voice is a task AI technologies excel at, which could be utilized in recording of teaching 

enactments).  

 

Also text data and different professional skills can be assessed with traditional ML. Instructors and researchers 

recognized the tremendous efforts that are involved with assessing reflections in teacher education (Leonhard & 

Rihm, 2011; Solopova et al., 2023; Ullmann, 2019). This often leads to the neglect of high-quality feedback for 

reflections, which arguably hinders PSTs in actively learning from their teaching experiences. Education 

researchers devised process models as proposals for what a complete reflection entails. Typically, levels (depths) 

and elements (breadth) for reflections are differentiated (Poldner et al., 2014). Assessing the depth of reflections 

is rather difficult, and holistic assessment of reflections is required (Poldner et al., 2014). This process (as any 

coding process) is conceptually challenging (Biernacki, 2014), and researchers resorted to more analytical, low-

inferential coding, which can be automated readily. (Ullmann, 2019) could show that simple ML models could be 

utilized to classify sentences in reflective writing in educational contexts. Wulff et al. (2021) utilized ML models 

in the context of PSTs' written reflections, and showed that sentences which are classified according to a 

reflection-supporting model by A. Nowak et al. (2019) could be input into an ML model which then relates them 

to elements in the reflection-supporting model. Reflection is a lever for professional development as outlined in 

the RCM. Consequently, ML and AI technologies can play an important role to strengthen assessment and 

potentially feedback in this domain in the RCM. 

 

ML and NLP also excel at extracting patterns in high-dimensional, complex data sets (Hastie et al., 2008). This is 

typically done with unsupervised ML methods (Odden et al., 2019). To exploratively analyze complex, 

constructed-response data, unsupervised ML approaches have been utilized. Copur-Gencturk et al. (2023) used 

an unsupervised ML approach to identify topics in constructed responses about proportions by mathematics 

teachers. They conclude that the unsupervised ML approach could capture relevant nuances in the mathematics 

teachers' (as cross-validated with a qualitative content analysis), and that these nuances are important for 

performance. Similarly, Cutumisu and Guo (2019) applied an unsupervised ML approach to identify themes in 

pre-service science teachers' reflections and found that many students reflected upon their positive experience 

(Topic 3). This topic modeling approach also allowed the authors to assign students reflections to topics, and 

evaluate the share of different topics across the corpus of reflections. Such a ``positivity bias'' also appeared in 

Wulff et al. (2021). 

 

Overall, for assessment of constructed response items, traditional ML and NLP can provide valuable resources 

(Nehm et al., 2012). STEM educators increasingly embrace knowledge-in-use assessments and performance tests, 

given the importance to assess competencies in authentic (performance) situations (Harris et al., 2019; 

Kulgemeyer & Riese, 2018), and they utilize ML and AI technologies to augment these assessments (Zhai, 

Haudek, Stuhlsatz, & Wilson, 2020; Zhai et al., 2022). In-depth insights into reasoning processes and knowledge 

application are expected from constructed response assessments (O. L. Liu et al., 2014), which allows science 

teacher education researchers engaged with the RCM to accurately and saleably assess performance-related skills 

such as enacted PCK or reflection. While traditional ML models might not generalize well across different 



Wulff, Mientus, Nowak, & Borowski  

 

604 

scenarios (that require wide transfer), human raters also face flaws. Human raters require resources each year to 

complete the manual coding, which is a benefit of the machines (Nehm et al., 2012). Moreover, the expertise of 

different human raters can vary, and effects of fatigue restrict the amount of coding that can be performed in a 

certain period of time (Zhai, Yin, et al., 2020). 

 

Deep Learning Applications in (Science) Teacher Education  

 

Advances in ML mainly related to processing larger data sets, with more sophisticated algorithms, in a faster way. 

This allowed researchers to train deep learning models (not to be confused with the concept ``deep learning'' in 

teacher education) which typically outperform more traditional ML models (Goodfellow et al., 2016). However, 

deep learning models also introduce more complexity and hence model decisions are typically less interpretable 

(Goodfellow et al., 2016). The improvements in performance were also found when applying deep learning 

models in PST education. In assessment of PSTs' written reflection it was shown that the generalization 

performance of the traditional ML models (here: multinomial logistic regression) was rather poor. Use of deep 

learning-based models, here LLMs, could substantially improve classification performance and generalizability, 

either across teachers, institutions, and even subjects (Carpenter et al., 2021; Carpenter et al., 2020; Wulff, 

Mientus, et al., 2022). These models were then used in practice to guide PSTs in their reflective writing by 

providing feedback on the structure of the reflection and identifying opportunities for improvement (Mientus et 

al., 2023). Moreover, once developed, ML models that are based on LLMs could be further improved in novel 

contexts (Wulff et al., 2023). This opens up the possibility to co-constructively and cumulatively develop and 

refine coding rubrics that are applicable across research contexts.  

 

Deep learning ML models, and LLMs in particular, can also be used for unsupervised ML analyses. Given the 

link of reflection to prior experiences, analysis of reflections by PSTs can yield insights into the noticing process 

of PSTs. For example, Wulff, Buschhüter, et al. (2022) utilized LLMs to transform written reflections of PSTs 

into vector representations to be further processed. Transformer-based LLMs (Devlin et al., 2018) were utilized 

to retrieve such representations that are sensitive to word senses (Reimers & Gurevych, 2019; Wiedemann et al., 

2019). Furthermore, clustering approaches can then be utilized to meaningfully differentiate different topics in 

language data such as reflection reports. (Solopova et al., 2023) designed a feedback AI, based on didactic theory 

for pre-service teachers. They combined supervised ML algorithms and unsupervised ML algorithms to design a 

multi-faceted automated feedback based on AI. 

 

With regards to the identified domains of the RCM, deep learning improves upon the capabilities of ML for 

assessment. The capabilities of LLMs and unsupervised ML also allow for systematic analysis of collective PCK 

by concurrently analyzing large corpora, e.g., textbook of PCK. Deep learning methods then enable the integrated 

analysis of collective and personal PCK. However, deep learning approaches oftentimes lack easy methods for 

understanding model decisions, which poses a challenge for STEM education research given that validity concerns 

oftentimes need full disclosure of why certain decisions were made. Particularly in high-stakes educational 

environments applications of these technologies needs to be regulated (Wulff et al., 2025). 
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Generative AI in (Science) Teacher Education 

 

Generative AI (either vision models or language models) offer novel potentials for analyzing data sets, as well as 

generative tasks such as providing adaptive guidance. In general, generative language models such as GPT-3.5 

and GPT-4 (generative pre-trained transformers) were shown to capture a large amount of domain knowledge, 

such as conceptual knowledge in physics (Kieser et al., 2023; Kortemeyer, 2023; West, 2023), or capabilities in 

mathematics and engineering-related quantitative reasoning (Lewkowycz et al., 2022). Cooper (2023) applied a 

self-study methodology and found that ChatGPT (an often used generative LLM based on GPT models) could 

meaningfully respond to education-related questions in STEM insofar as it included research themes in the 

educational research literature. Zhai (2023) found that ChatGPT could be utilized to help with writing an academic 

research paper on AI in education. However, pre-service and in-service teachers only have limited experience 

with and knowledge about these (Gen)AI technologies (partly due to lacking infrastructure) (NYAABA & Zhai, 

2024; Sperling et al., 2024). 

 

Related to teachers' professional skills, Li et al. (2023) investigated whether GenAI LLMs (ChatGPT) could write 

reflectively and generate high-quality reflections. The authors found that ChatGPT generated reflections of higher 

quality compared to the students' reflections, as assessed through an eight-category rubric. Moreover, they found 

that human expert raters could not reliably differentiate reflective writing generated by the students versus 

ChatGPT. This resonates with findings that ChatGPT-generated physics essays reach student quality and cannot 

be detected as artificially generated (Yeadon et al., 2023). These findings raise the concern that students might 

outsource important reflective tasks to GenAI and fail to reflect their own learning processes. Furthermore, G.-G. 

Lee and Zhai (2024) enabled PST to utilize ChatGPT to design science lesson plans. The designed lesson plans 

by ChatGPT were found to be variable with regards to teaching and learning strategies, and domains. Thus, 

ChatGPT could function as an individualized assistant for PSTs to plan lessons or as a tool to generate learning 

materials. Similarly, Küchemann et al. (2023) allow PST to use ChatGPT to design instructional tasks, and the 

research by Kieser et al. (2023) indicates that GenAI tools could be utilized to test one's designed tests and 

instructional materials. In the study by Küchemann et al. (2023) it was found that tasks by PSTs who used 

ChatGPT were equally accurate compared to tasks designed by PST who used a textbook. However, the textbook 

group achieved higher clarity and more meaningful contexts. Given that ChatGPT is not a dedicated resources for 

physics-specific purposes this is quite interesting for instructional settings and highlights the usefulness of 

ChatGPT for PST. 

 

In fact, specifically instructing (i.e., prompting) GenAI LLMs such as GPT can improve outcomes and ground 

them towards the expectations of researchers. Even simple prompts such as ``let's think step by step'' (or, for that 

matter, imagine being a Star Trek character when solving math problems) were found to improve the accuracy of 

the output of the generative LLM (Polverini & Gregorcic, 2024a; Wei, 2022). The basic idea behind prompting 

strategies is to breakdown tasks into subtasks, and make explicit the chain of ``thoughts'' involved in reaching a 

certain solution (Khot et al., 2023). More particularly, Wan and Chen (2024) showed that extensive prompting for 

feedback on a physics problem solution could enable the generative LLM to provide useful and accurate feedback 

for learners. Important facets of the designed prompting template were: 1) provide an expert solution, 2) provide 
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examples, and 3) describe how the feedback should be designed. This prompting strategy then enabled the LLM 

to generate feedback which was equally accurate and more personally useful, as evaluated by the feedback-

receiving students. 

 

GenAI tools such as generative LLMs enables a multitude of applications related to the domains in the RCM. For 

example, designing prompting templates can be valuable in reflective writing analytics, since it can be used to 

better enable a generative LLM to provide targeted feedback for PSTs' written reflections and thus help improve 

the implementation of the teaching cycle in the RCM. This then could be leveraged as a resource to support PST 

to reflect in teaching internships. Moreover, generative LLMs can be used by PST as a resource to probe their 

personal PCK, e.g., their knowledge of student understanding, methods, or instructional strategies. To harness the 

full potentials of these genAI technologies, STEM education researchers should engage in designing effective 

templates that facilitate feedback grounded in theoretical constructs such as PCK. 

 

Conclusions and Future Directions 

 

In Figure 1 we outlined the domains assessing the realms of PCK and enhancing professional development for 

teachers in STEM. We argue that in both realms AI methods can provide unique potentials that already have been 

partly realized in the reviewed studies, but need to be systematically taken up and expanded upon. With regards 

to assessing the realms of PCK, (gen)AI, and ML in particular allow researchers to extract patterns in complex 

data (unsupervised ML), and automatically score data according to established coding rules (supervised ML). 

These two ML approaches have been utilized in STEM teacher education to explore themes in PST's PCK, 

automatically score constructed PCK responses, extract topics and themes in constructed responses, and assess 

reflective thinking processes. Deep learning ML models then allowed educational researchers to increase accuracy 

in coding, as well as make more informed thematic maps of PST's PCK. Moreover, large representative document 

corpora can be explored with AI methods and therefore facilitate systematic curriculum development and 

extraction of students' ideas. With tools such as automated transcription (AI based) and NLP, researchers have 

now tools to concurrently analyze large language corpora with reference to PCK and thus identify relationships 

between personal and enacted PCK. 

 

Related to enhancing professional development of STEM teachers, AI methods can foster knowledge exchange 

and analysis of teaching and student outcomes as outlined in Figure 1. For example, genAI can be utilized to 

design instructional tasks, and even generate lesson plans. The scope of possible tasks is even broader, and specific 

prompting of generative genAI models was shown to be able to improve the generated outputs towards pre-

specified instruction. These capabilities can enhance adaptive, individualized feedback, which is crucial for 

teachers' professional development (Clarke & Hollingsworth, 2002). GenAI models can also be used to integrate 

student outcomes into prompting and thus help ground teachers' reflections to actual learning outcomes. This 

provides entirely novel ways of generating integrated feedback, however, research is only at its infancy. 

Development of professional skills such as lesson planning and reflection can be enhanced with genAI. For 

example, GenAI models can be utilized to generate lesson plans (G.-G. Lee & Zhai, 2024). However, they can 

also be used in the reverse direction: to identify themes and knowledge elements in lesson plans by PSTs. This 
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hinges on specific prompting strategies, which researchers have to develop. Existing theory and models for either 

lesson planning, and reflection are crucial for prompt design, given that they can inform the design of meaningful 

prompts (Solopova et al., 2023). This then allows for adaptive, computerized feedback that has long been shown 

to be very effective regarding learning outcomes (Lai & Calandra, 2010; VanLehn, 2011). The recent advances 

in GenAI substantially boost performance and versatility of automated dialogue systems that could provide 

teachers their personal agents to improve professional skills. 

 

Considering Limitations 

 

AI approaches are no silver bullets and particular care with applying them has to be taken, especially in (STEM) 

teacher education where decisions eventually are very consequential for the individual teachers and their 

prospective students (as they become multipliers). Above we highlighted that ML algorithms are statistical 

learning procedures. This relates to the most substantial limitation of these approaches: they are ultimately 

constrained by the given training data set. Even though LLMs are capable to generate novel output (e.g., sentences 

that are not in the training data set), ML algorithms lack an appropriate world model, which makes them fail 

glaringly in tasks that can be trivial for humans (Bahdanau et al., 2019; M. Mitchell, 2023; M. Mitchell & 

Krakauer, 2023; M. Mitchell et al., 2023). While Lake and Baroni (2023) showed that certain genAI models are 

capable to systematically generalize (i.e., infer underlying rules of a system such as a grammar) to some extent, 

M. Mitchell et al. (2023) showed that similar genAI models fail at abstraction tasks, and thus lack fundamental 

capabilities that humans have. Researchers showed that the underlying machinery of GenAI LLMs is all but 

comprehensible.  

 

The lack of an appropriate world model and spoiled training data in genAI lead to limitations such as false factual 

knowledge (Gregorcic & Pendrill, 2023), limitations in multi-modal capabilities (Polverini & Gregorcic, 2024b), 

as well as limitations related to problem solving capabilities (Kieser & Wulff, 2024). In fact, oftentimes these 

models simply regurgitate what was seen in training (Bender et al., 2021), which could resemble a misconception 

about conceptual science knowledge. This raises the important question of to what extent these models with 

specific training regimes can be creative or innovative, which many researchers doubt (Browning & LeCun, 2022). 

``It’s extremely typical of machine learning that it manages to do a good job of getting things 'roughly right'. But 

nailing the details is not what machine learning tends to be good at'' (Wolfram, 2024). Wolfram (2024) further 

argues that ML algorithms such as artificial neural networks will find pockets/attractors in their sensory spaces 

(e.g., chemical space), however, humans will only be able to detect the sensible, or interpretable, ones, i.e., those 

for which an experiential basis exists. This creates an interface problem where humans might not be able to make 

sense of innovative patterns that eventually might be stored in the ML models. As long as generative LLMs are 

grounded in experiential data, they might accomplish certain tasks satisfactorily. However, once reliable 

knowledge and reasoning capabilities become necessary, these models were shown to be brittle (M. Mitchell, 

2023). Even worse, they reproduce biases and stereotypes related to ethnicity, race, or gender that are present in 

the training data (Christian, 2021), fundamentally related to aleatoric and epistemic uncertainty in ML (Wulff et 

al., 2025). Although many efforts have been made to reverse engineer these failures, progress has been modest to 

our estimation. Alongside issues of privacy, proprietary rights, and closed-source software (at least for GPT 
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models, somewhat ironically related by a company called OpenAI), application in educational practice should be 

severely limited and closely monitored. 

 

With regards to STEM teacher education it is particularly problematic that no high-quality training data is 

provided for genAI models which encapsulates learning difficulties, knowledge of students understanding, and 

other facets of established educational theory in STEM fields. At least, we cannot assure that other training data 

that encapsulates common misconceptions about STEM-related phenomena overrides the knowledge gained in 

educational research. As such, critical investigation of the employed models and careful prompt engineering 

become all the more relevant. 

 

Concluding Remarks 

 

In sum, AI and ML methods are beginning to be used in PST education and can provide valuable resources to 

automate assessment and provide individualized feedback, and thus potentially enhance professional development 

of PSTs. With careful consideration for the specific affordances and limitations, AI and ML methods can be 

expected to provide novel capabilities for enhancing professional development of STEM teachers with reference 

to the specific domains in the RCM. GenAI tools offer particular opportunities for assessment and adaptive 

feedback. However, precision of genAI for specific tasks is limited, especially when it comes to tasks that require 

high levels of expertise (Solopova et al., 2023).  

 

Many tasks in professional development programs in teacher education in STEM arguably require medium levels 

of expertise, such as providing feedback on the breadth of teachers' reflections, or the structure of their lesson 

plans. Even such structural (potentially superficial feedback) can have positive effects even on teachers 

understanding of certain tasks and requirements, which could streamline professional practices where PSTs 

rightfully complain that they often lack a precise knowledge of the requirements. For instructors this could exempt 

them from repetitive tasks such as specifying the task requirements each and every time.  

 

Appropriately motivating and justifying the use of genAI in educational contexts will become a crucial means to 

raise awareness and engagement with this important new technology. Nazaretsky et al. (2022) designed a 

professional development program for fostering teachers AI-related understanding. The authors identify 

confirmation bias and trust as a crucial components to address to motivate teacher to adopt novel technologies. 

By no means should we encourage teachers to trust any AI technology, however, we eventually should foster a 

mindset to explore potentials and critically reflect areas for application and limitations.  

 

Researchers argue that LLMs can particularly complement and augment humans in (explorative) ideation 

processes, whereas verification of solutions is not a strong suit of these particular AI agents. Such considerations 

can guide efforts to utilize AI to enhance PST professional development. Empowering PSTs in STEM fields to 

utilize genAI, which are enriched by researchers and instructors templates, could help reduce the uncertainty that 

comes along with the teaching profession and help teachers to focus on their actual profession: effectively teaching 

STEM subjects. 
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Abbreviations 

 

    AI    Artificial intelligence  

    GenAI Generative artificial intelligence 

    LLM   Large language model  

    ML    Machine learning  

    NLP   Natural language processing  

    PCK   Pedagogical content knowledge  

    PST   Pre-service teachers in STEM fields  

    RCM   Refined consensus model 
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